94
Views
0
CrossRef citations to date
0
Altmetric
Review

Developmental Hearing Loss Disrupts Synaptic Inhibition: Implications for Auditory Processing

, &
Pages 331-349 | Published online: 23 Apr 2009

Bibliography

  • Mody M , SchwartzRG, GravelJS, RubenRJ: Speech perception and verbal memory in children with and without histories of otitis media.J. Speech Lang. Hear. Res.42, 1069–1079 (1999).
  • Vernon-Feagans L : Impact of otitis media on speech, language, cognition, and behavior. In: Evidence-Based Otitis Media. RosenfieldRM, BluestonCD (Eds). Decker, St Louis, MO, USA353–373 (1999).
  • Psarommatis IM , GoritsaE, DouniadakisD, TsakanikosM, KontrogianniAD, ApostolopoulosN: Hearing loss in speech-language delayed children.Int. J. Pediatr. Otorhinolaryngol.58, 205–210 (2001).
  • Kidd G Jr, Arbogast TL, Mason CR, Walsh M: Informational masking in listeners with sensorineural hearing loss. J. Assoc. Res. Otolaryngol.3, 107–119 (2002).
  • Emmorey K , AllenJS, SchenkerN, DamasioH: A morphometric analysis of auditory brain regions in congenitally deaf adults.Proc. Natl Acad. Sci. USA100, 10049–10054 (2003).
  • Iverson P : Evaluating the function of phonetic perceptual phenomena within speech recognition: an examination of the perception of /d/-/t/ by adult cochlear implant users.J. Acoust. Soc. Am.113, 1056–1064 (2003).
  • Moore DR : Auditory processing disorders: acquisition and treatment.J. Commun. Disord.40(4), 295–304 (2007).
  • Hogan SC , MeyerSC, MooreDR: Binaural unmasking returns to normal in teenagers who had otitis media in infancy.Audiol. Neurootol.1, 104–111 (1996).
  • Wilmington D , GrayL, JahrsdoerferR: Binaural processing after corrected congenital unilateral conductive hearing loss.Hear. Res.74, 99–114 (1994).
  • Sharma A , DormanMF, SpahrAJ: A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation.Ear Hear.23, 532–539 (2002).
  • Di Cristo G : Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders.Clin. Genet.72, 1–8 (2007).
  • Bergstrom L , HemenwayWG, DownsMP: A high risk registry to find congenital deafness.Otolaryngol. Clin. North Am.4, 369–399 (1977).
  • Billings KR , KennaMA: Causes of pediatric sensorineural hearing loss.Arch. Otolaryngol. Head Neck Surg.125, 517–521 (1999).
  • Kenna MA : Medical management of childhood hearing loss.Pediatric. Ann.33(12), 822–832 (2004).
  • Svirsky MA , TeohSW, NeuburgerH: Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation.Audiol. Neurootol.9, 224–233 (2004).
  • Nicholas JG , GeersAE: Effects of early experience on the spoken language of deaf children at 3 years of age.Ear Hear.27(3), 286–298 (2007).
  • NIDCD statistics, NIH Publication No. 00–479
  • Dhooge IJ : Risk factors for the development of otitis media.Curr. Allergy Asthma Rep.3(4), 321–325 (2003).
  • Paradise JL : Otitis media during early life: how hazardous to development? A critical review of the evidence.Pediatrics68, 869–873 (1997).
  • Fria TJ , CantekinEI, EichlerJA: Hearing acuity of children with otitis media with effusion.Arch. Otolaryngol.111, 10–16 (1985).
  • Roberts J , HunterL, GravelJet al.: Otitis media, hearing loss, and language learning: controversies and current research.J. Dev. Behav. Pediatr.25(2), 110–122 (2004).
  • Hogan SC , StratfordKJ, MooreDR: Duration and recurrence of otitis media with effusion in children from birth to 3 years: prospective study using monthly otoscopy and tympanometry.BMJ314(7077), 350–353 (1997).
  • Hogan SC , MooreDR: Impaired binaural hearing in children with middle ear disease.J. Assoc. Res. Otol.4, 123–129 (2003).
  • Hall AJ , Munro,KJ, HeronJ: Developmental changes in word recognition threshold from two to five years of age in children with different middle ear status.Int. J. Audio.46(7), 355–361 (2007).
  • Zumach A , GerritsE, ChenaultMN, AnteunisLJ: Otitis media and speech-in-noise recognition in school-aged children.Audiol. Neurootol.14(2), 121–129 (2008).
  • Reichman J , HealeyWC: Learning disabilities and conductive hearing loss involving otitis media.J. Learn. Disabil.16(5), 272–278 (1983).
  • Bennett FC , FurukawaCT: Effects of conductive hearing loss on speech, language, and learning development.Clin. Rev. Allergy2(4), 377–385 (1984).
  • Schlieper A , KisilevskyH, MattinglyS, YorkeL: Mild conductive hearing loss and language development, a one year follow-up study.J. Dev. Behav. Pediatr.6(2), 65–68 (1985).
  • Teele DW , StewardIA, TeeleJH, SmithDK, TergonningSJ: Acoustic reflectometry for assessment of hearing loss in children with middle ear effusion.Pediatr. Infect. Dis. J.9(12), 870–872 (1990).
  • Schönweiler R , PtokM, RadüHJ: A cross-sectional study of speech and language abilities of children with normal hearing, mild fluctuating hearing loss, or moderate to profound sensorineural hearing loss.Int. J. Pediatr. Otorhinolaryngol.44(3), 251–258 (1998).
  • Psillas G , PsifidisA, Antoniadou-HitoglouM, KouloulasA: Hearing assessment in pre-school children with speech delay.Auris Nasus Larynx33(3), 259–263 (2006).
  • Pittman AL , LewisDE, HooverBM, StelmachowiczPG: Rapid word-learning in normal-hearing and hearing-impaired children: effects of age, receptive vocabulary, and high-frequency amplification.Ear Hear.26, 619–629 (2005).
  • Moeller MP , TomblinJB, Yoshinaga-ItanoC, ConnorCM, JergerS: Current state of knowledge: language and literacy of children with hearing impairment.Ear Hear.28, 740–753 (2007).
  • Hall JW 3rd, Grose JH, Pillsbury HC: Long-term effects of chronic otitis media on binaural hearing in children. Arch. Otolaryngol. Head Neck Surg.121(8), 847–852 (1995).
  • Silverman MS , CloptonBM: Plasticity of binaural interaction. I. Effect of early auditory deprivation.J. Neurophysiol.40, 1266–1274 (1977).
  • Moore DR , IrvineDR: Plasticity of binaural interaction in the cat inferior colliculus.Brain Res.208, 198–202 (1981).
  • Mogdans J , KnudsenEI: Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum.J. Neurosci.12, 3473–3484 (1992).
  • Mogdans J , KnudsenEI: Early monaural occlusion alters the neural map of interaural level differences in the inferior colliculus of the barn owl.Brain Res.619(1–2), 29–38 (1993).
  • Miller GL , KnudsenEI: Early auditory experience induces frequency-specific, adaptive plasticity in the forebrain gaze fields in the barn owl.J. Neurophysiol.85, 2184–2194 (2001).
  • Gold JI , KnudsenEI: Abnormal auditory experience induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.J. Neurophysiol.82, 2197–2209 (2000).
  • Gold JI , KnudsenEI: Adaptive adjustment of connectivity in the inferior colliculus revealed by focal pharmacological inactivation.J. Neurophysiol.85, 1575–1584 (2001).
  • Sanes DH , RubelEW: The ontogeny of inhibition and excitation in the gerbil lateral superior olive.J. Neurosci.8, 682–700 (1988).
  • Woolf NK , RyanAF: The development of auditory function in the cochlea of the mongolian gerbil.Hear. Res.13, 277–283 (1984).
  • Tollin DJ : The lateral superior olive: a functional role in sound source localization.Neuroscientist9(2), 127–143 (2003).
  • Sanes DH , WootenGF: Development of glycine receptor distribution in the lateral superior olive of the gerbil.J. Neurosci.7, 3803–3811 (1987).
  • Grothe B , SanesDH: Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study.J. Neurosci.14(3 Pt 2), 1701–1709 (1994).
  • Brand A , BehrendO, MarquardtT, McAlpineD, GrotheB: Precise inhibition is essential for microsecond interaural time difference coding.Nature417(6888), 543–547 (2002).
  • Pecka M , BrandA, BehrendO, GrotheB: Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.J. Neurosci.28, 6914–6925 (2008).
  • Sanes DH , SiverlsV: Development and specificity of inhibitory terminal arborizations in the central nervous system.J. Neurobiol.22, 837–854 (1991).
  • Kim G , KandlerK: Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation.Nat. Neurosci.6, 282–290 (2003).
  • Sanes DH : The development of synaptic function and integration in the central auditory system.J. Neurosci.13, 2627–2637 (1993).
  • McFadden SL , WalshEJ, McGeeJ: Onset and development of auditory brainstem responses in the Mongolian gerbil (Meriones unguiculatus).Hear. Res.100, 68–79 (1996).
  • Sanes DH , TakácsC: Activity-dependent refinement of inhibitory connections.Eur. J. Neurosci.5, 570–574 (1993).
  • Koch U , SanesDH: Afferent regulation of glycine receptor distribution in the gerbil LSO.Microsc. Res. Tech.41(3), 263–269 (1998).
  • Werthat F , AlexandrovaO, GrotheB, KochU: Experience-dependent refinement of the inhibitory axons projecting to the medial superior olive.Dev. Neurobiol.68(10), 1454–1462 (2008).
  • Kapfer C , SeidlAH, SchweizerH, GrotheB: Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons.Nat. Neurosci.5, 247–253 (2002).
  • Seidl AH , GrotheB: Development of sound localization mechanisms in the Mongolian gerbil is shaped by early acoustic experience.J. Neurophysiol.94, 1028–1036 (2005).
  • Kotak VK , SanesDH: Long-lasting inhibitory synaptic depression is age- and calcium- dependent.J. Neurosci.20, 5820–5826 (2000).
  • Moore MJ , CasparyDM: Strychnine blocks binaural inhibition in lateral superior olivary neurons.J. Neurosci.3, 237–247 (1983).
  • Sanes DH , GearyWA, WootenGF, RubelEW: Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil.J. Neurosci.7, 3793–3802 (1987).
  • Wenthold RJ , HuieD, AltschulerRA, ReeksKA: Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex.Neuroscience22, 897–912 (1987).
  • Wenthold RJ , AltschulerRA, HampsonDR: Immunocytochemistry of neurotransmitter receptors.J. Electron Microscop. Tech.15, 81–96 (1990).
  • Kotak VC , KoradaS, SchwartzIR, SanesDH: A developmental shift from GABAergic to glycinergic transmission in the central auditory system.J. Neurosci.18, 4646–4655 (1998).
  • Korada S , SchwartzIL: Development of GABA, glycine and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study.J. Comp. Neurol.409, 664–681 (1999).
  • Nabekura J , KatsurabayashiS, KakazuYet al.: Developmental switch from GABA to glycine release in single central synaptic terminals.Nat. Neurosci.7, 17–23 (2004).
  • Chang EH , KotakVC, SanesDH: Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system.J. Neurophysiol.90, 1479–1488 (2003).
  • Kotak VC , DiMattinaC, SanesDH: GABAB and Trk receptor signaling mediates long-lasting inhibitory synaptic depression.J. Neurophysiol.86, 536–540 (2001).
  • Kotak VC , SanesDH: Gain adjustment of inhibitory synapses in the auditory system.Biol. Cybern.89(5), 363–370 (2003).
  • Kotak VK , BreithauptAD, SanesDH: Developmental hearing loss eliminates long-term potentiation in the auditory cortex.Proc. Natl Acad. Sci. USA104(9), 3550–3555 (2007).
  • Gabriele ML , Brunso-BechtoldJK, HenkelCK: Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation.J. Neurosci.20, 6939–6949 (2000).
  • Franklin SR , Brunso-BechtoldJK, HenkelCK: Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus.Neuroscience154, 346–354 (2008).
  • Sadaka Y , WeinfeldE, LevDL, WhiteEL: Changes in mouse barrel synapses consequent to sensory deprivation from birth.J. Comp. Neurol.457(1), 75–86 (2003).
  • Chattopadhyaya B , Di Cristo G, Higashiyama Het al.: Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci.24(43), 9598–9611 (2004).
  • Sarro EC , KotakVC, SanesDH, AokiC: Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABA-A receptors in the auditory cortex.Cereb. Cortex18(12), 2855–2867 (2008).
  • Halliday LF , BishopDV: Frequency discrimination and literacy skills in children with mild to moderate sensorineural hearing loss.J. Speech Lang. Hear. Res.48(5), 1187–1203 (2005).
  • Cranford JL , ThompsonN, HoyerE, FairesW: Brief tone discrimination by children with histories of early otitis media.J. Am. Acad. Audio.8(2), 137–141 (1997).
  • Nelson DA , FreymanRL: Psychometric functions for frequency discrimination from listeners with sensorineural hearing loss.J. Acoust. Soc. Am.79(3), 799–805 (1986).
  • Wang J , SalviRJ, PowersN: Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.J. Neurophysiol.75, 171–183 (1996).
  • Eggermont JJ , KomiyaH: Moderate noise trauma in juvenile cats results in profound cortical topography.Hear. Res.142(1–2), 89–101 (2000).
  • Wang J , DingD, SalviRJ: Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage.Hear. Res.168, 238–249 (2002).
  • Syka J : Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning.Physiol. Rev.82(3), 601–636 (2002).
  • Irvine DR , RajanR, SmithR: Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus.J. Comp. Neurol.467(3), 354–374 (2003).
  • Barsz K , WilsonWW, WaltonJP: Reorganization of receptive fields following hearing loss in inferior colliculus neurons.Neuroscience147(2), 532–545 (2007).
  • Robertson D , IrvineDR: Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness.J. Comp. Neurol.282(3), 456–471 (1989).
  • Harrison RV , NagasawaA, SmithDW, StantonS, MountRJ: Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss.Hear. Res.54(1), 11–19 (1991).
  • Irvine DR , RajanR: Injury-induced reorganization of frequency maps in adult auditory cortex: the role of unmasking of normally-inhibited inputs.Acta Otolaryngol. Suppl.532, 39–45 (1997).
  • Rajan R : Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity.Nat. Neurosci.1, 138–143 (1998).
  • Irvine DR , RajanR, BrownM: Injury- and use-related plasticity in adult auditory cortex.Audiol. Neurootol.6(4), 192–195 (2001).
  • Shuz A , PalmG: Density of neurons and synapses in the cerebral cortex of the mouse.J. Comp. Neurology286(4), 442–455 (1989).
  • Chagnac-Amitai Y , ConnorsBW: Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition.J. Neurophysiol.61, 747–758 (1989).
  • DeFelipe J , FarinasI: The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs.Prog. Neurobiol.39(6), 563–607 (1992).
  • Markram H , Toledo-RodriguezM, WangY, GuptaA, SilberbergG, WuC: Interneurons of the neocortical inhibitory system.Nat. Rev. Neurosci.5(10), 793–807 (2004).
  • Müller CM , ScheichH: Contribution of GABAergic inhibition to the response characteristics of auditory units in the avian forebrain.J. Neurophysiol.59, 1673–1689 (1988).
  • Chen QC , JenPH: Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons.Hear. Res.150, 161–174 (2000).
  • Wang J , CasparyD, SalviRJ: GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex.Neuroreport11(5), 1137–1140 (2000).
  • Wang J , McFaddenSL, CasparyD, SalviR: γ-aminobutyric acid circuits shape response properties of auditory cortex neurons.Brain Res.19, 219–231 (2002).
  • Foeller E , VaterM, KösslM: Laminar analysis of inhibition in the gerbil primary auditory cortex.J. Assoc. Res. Otolaryngol.2, 279–296 (2001).
  • Kaur S , LazarR, MetherateR: Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex.J. Neurophysiol.91, 2551–2567 (2004).
  • Yang L , PollakGD, ReslerC: GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus.J. Neurophysiol.68, 1760–1774 (1992).
  • Metherate R , KaurS, KawaiH, LazarR, LiangK, RoseHJ: Spectral integration in auditory cortex: mechanisms and modulation.Hear. Res.206(1–2), 146–158 (2005).
  • Oswald AM , SchiffML, ReyesAD: Synaptic mechanisms underlying auditory processing.Curr. Opin. Neurobiol.16(4), 371–376 (2006).
  • Kaur S , LazarR, MetherateR: Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex.J. Neurophysiol.91, 2251–2567 (2004).
  • Wehr M , ZadorAM: Synaptic mechanisms of forward suppression in rat auditory cortex.Neuron47(3), 437–445 (2003).
  • Liu BH , WuGK, ArbuckleR, TaoHW, ZhangLI: Defining cortical frequency tuning with recurrent excitatory circuitry.Nat. Neurosci.10(12), 1594–1600 (2007).
  • Wu GK , ArbuckleR, LiuBH, TaoHW, ZhangLI: Lateral sharpening of cortical frequency tuning by approximately balanced inhibition.Neuron58(1), 132–143 (2008).
  • Atencio CA , SchreinerCE: Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons.J. Neurosci.28(15), 3897–3910 (2008).
  • Suga N , ManabeT: Neural basis of amplitude-spectrum representation in auditory cortex of the moustached bat.J. Neurophysiol.47(2), 225–255 (1982).
  • Shamma SA : Speech processing in the auditory system. II. Lateral inhibition and the central processing of speech evoked activity in the auditory nerve.J. Acoust. Soc. Am.78(5), 1622–1632 (1985).
  • Calford MB , SempleMN: Monaural inhibition in cat auditory cortex.J. Neurophysiol.73(5), 1876–1891 (1995).
  • Zhang LI , TanAY, SchreinerCE, MerzenichMM: Topography and synaptic shaping of direction selectivity in primary auditory cortex.Nature424(6945), 201–205 (2003).
  • Tan AY , ZhangLI, MerzenichMM, SchreinerCE: Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons.J. Neurophysiol.92(1), 630–643 (2004).
  • Kitzes LM , SempleMN: Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation.J. Neurophysiol.53(6), 1483–1500 (1985).
  • Salvi RJ , SaundersSS, GrattonMA, AreholeS, PowersN: Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma.Hear. Res.50, 245–258 (1990).
  • Szczepaniak WS , M⊘llerAR: Evidence of decreased GABAergic influence on temporal integration in the inferior colliculus following acute noise exposure: a study of evoked potentials in the rat.Neurosci. Lett.196, 77–80 (1995).
  • Qiu C , SalviR, DingD, BurkardR: Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain.Hear. Res.139(1–2), 153–171 (2000).
  • Kral A , HartmannR, TilleinJ, HeidS, KlinkeR: Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer specific manner.Cereb. Cortex10, 714–726 (2000).
  • Noreña AJ , TomitaM, EggermontJJ: Neural changes in cat auditory cortex after a transient pure-tone trauma.J. Neurophysiol.90, 2387–2401 (2003).
  • Seki S , EggermontJJ: Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss.Hear. Res.180, 28–38 (2003).
  • Raggio MW , SchreinerCE: Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness.J. Neurophysiol.82(6), 3506–3526 (1999).
  • Rajan R : Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage.Cereb. Cortex11(2), 171–182 (2001).
  • Leao RN , OleskevichS, SunH, BautistaM, FyffeRE, WalmsleyB: Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice.J. Neurophysiol.91(2), 1006–1012 (2004).
  • Suneja SK , BensonCG, PotashnerSJ: Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation.Exp. Neurol.154(2), 473–488 (1998).
  • Asako M , HoltAG, GriffithRD, BurasED, AltshulerRA: Deafness-related decrease in glycine-immunoreactive labeling in the rat cochlear nucleus.J. Neurosci.81(1), 102–109 (2005).
  • Buras ED , HoltAG, GriffithRD, AsakoM, AltschulerRA: Changes in glycine immunoreactivity in the rat superior olivary complex following deafness.J. Comp. Neurol.494(1), 179–189 (2006).
  • Suneja SK , PotashnerSJ, BensonCG: Plastic changes in glycine and GABA release and Uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation.Exp. Neurol.151(2), 273–288 (1998).
  • Potashner SJ , SunejaSK, BensonCG: Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation.Hear. Res.147(1–2), 125–136 (2000).
  • Oleskevich S , WalmsleyB: Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice.J. Physiol.540(2), 447–455 (2002).
  • Francis HW , ManisPB: Effects of deafferentation on the electrophysiology of ventral cochlear nucleus neurons.Hear. Res.149(1–2), 91–105 (2000).
  • Zhang JS , KaltenbachJA: Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sounds.Neurosci. Lett.250(3), 197–200 (1998).
  • Kotak VC , SanesDH: Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs.J. Neurosci.16, 1836–1843 (1996).
  • Pollak GD , BurgerRM, KlugA: Dissecting the circuitry of the auditory system.Trends Neurosci.26(1), 33–39 (2003).
  • Vale C , SanesDH: Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain.J. Neurosci.20(5), 1912–1920 (2000).
  • Zucker RS , RegehrWG: Short-term synaptic plasticity.Annu. Rev. Physiol.64, 355–405 (2002).
  • Stevens C : Neurotransmitter release at central synapses.Neuron40, 381–388 (2003).
  • Vale C , SanesDH: The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus.Eur. J. Neurosci.16(12), 2394–2404 (2002).
  • Cruikshank SI , RoseHJ, MetherateR: Auditory thalamocortical synaptic transmission in vitro.J. Neurophysiol.87(1), 361–384 (2002).
  • Kotak VC , FujisawaS, LeeFA, KarthikeyanO, AokiC, SanesDH: Hearing loss raises excitability in the auditory cortex.J. Neurosci.25(15), 3908–3918 (2005).
  • Kotak VC , TakesianAE, SanesDH: Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex.Cereb. Cortex18(9), 2098–2108 (2008).
  • Takesian AE , KotakVC, SanesDH: Unpublished observations
  • Bormann J , HamillOP, SakmannB: Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones.J. Physiol.385, 243–286 (1987).
  • Delpire E , RauchmanMI, BeierDR, HebertSC, GullansSR: Molecular cloning and chromosome localization of a putative basolateral Na+-K++–2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells.J. Biol. Chem.269, 25677–25683 (1994).
  • Payne JA : Functional characterization of the neuronal-specific K–Cl cotransporter: implications for K+o regulation.Am. J. Physiol.273, C1516–C1525 (1997).
  • Payne JA , StevensonTJ, DonaldsonLF: Molecular characterization of a putative K-Cl cotransporter in rat brain.J. Biol. Chem.27, 16245–16252 (1996).
  • Payne JA , RiveraC, VoipioJ, KailaK: Cation-chloride co-transporters in neuronal communication, development, and trauma.Trends Neurosci.26, 199–206 (2003).
  • Vale C , SchoorlemmerJ, SanesDH: Deafness disrupts chloride transporter function and inhibitory synaptic transmission.J. Neurosci.23(20), 7516–7524 (2003).
  • Otis TS , De Koninck Y, Mody I: Lasting potentiation of inhibition is associated with an increased number of γ-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl Acad. Sci. USA91, 7698–7702 (1994).
  • Nusser Z , Cull-CandyS, FarrantM: Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude.Neuron19, 697–709 (1997).
  • Nusser Z , HajosN, SomogyiP, ModyI: Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses.Nature395, 172–177 (1998).
  • Connolly CN , KrishekBJ, McDonaldBJ, SmartTG, MossSJ: Assembly and cell surface expression of heteromeric γ-amobutyric acid type A receptors.J. Biol. Chem.271, 89–96 (1996).
  • Baumann SW , BaurR, SigelE: Individual properties of the two functional agonist sites in GABAA receptors.J. Neurosci.23, 11158–11166 (2003).
  • Wisden W , LaurieDJ, MonyerH, SeeburgPH: The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalons, mesencephalon.J. Neurosci.12(3), 1063–1076 (1992).
  • Amin J , WeissDS: GABAA receptor needs two homologous domains of the β-subunit for activation by GABA but not by pentobarbital.Nature366, 565–569 (1993).
  • McKernan RM , WhitingPJ: Which GABAA-receptor subtypes really occur in the brain?Trends Neurosci.19(4), 139–143 (1996).
  • Möhler H : GABAA receptor diversity and pharmacology.Cell Tiss. Res.326, 505–516 (2006).
  • Laurie DJ , WisdenW, SeeburgPH: The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development.J. Neurosci.12, 4151–4172 (1992).
  • Vicini S , FergusonC, PrybylowskiK, KralicJ, MorrowAL, HomanicsGE: GABAA receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons.J. Neurosci.21, 3009–3016 (2001).
  • Banks MI , HardieJB, PearceRA: Development of GABAA receptor-mediated inhibitory postsynaptic currents in hippocampus.J. Neurophysiol.88, 3097–3107 (2002).
  • Mody I , PearceRA: Diversity of inhibitory neurotransmission through GABAA receptors.Trends Neurosci.27, 569–575 (2004).
  • Bosman LW , HeinenK, SpijkerS, BrussaardAB: Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood.J. Neurophysiol.94, 338–346 (2005).
  • Huntsman MM , HuguenardJR: Fast IPSCs in rat thalamic reticular nucleus require the GABAA receptor β1 subunit.J. Physiol.572, 459–475 (2006).
  • Ing T , PoulterMO: Diversity of GABAA receptor synaptic currents on individual pyramidal cortical neurons.Eur. J. Neurosci.25, 723–734 (2007).
  • Browning ND , BureauM, DudekEM, OlsenRW: Protein kinase C and cAMP-dependent protein kinase phosphorylate the b subunit of the purifed γ-amimobutyric acid A receptor.Proc. Natl Acad. Sci. USA87, 1315–1318 (1990).
  • Jones MV , WestbrookGL: Desensitized states prolong GABAA channel responses to brief agonist pulses.Neuron15, 181–191 (1995).
  • Murthy VN , SchikorskiT, StevensCF, ZhuY: Inactivity produces increases in neurotransmitter release and synapse size.Neuron32, 673–682 (2001).
  • Conti F , MinelliA, MeloneM: GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications.Brain Res. Rev.45, 196–212 (2004).
  • Kilman V , van Rossum MC, Turrigiano GG: Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J. Neurosci.22, 1328–1337 (2002).
  • Maffei A , NelsonSB, TurrigianoGG: Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.Nat. Neurosci.7, 1353–1359 (2004).
  • Fuchs JL , SalazarE: Effects of whisker trimming on GABAA receptor binding in the barrel cortex of developing and adult rats.J. Comp. Neurol.395(2), 209–216 (1998).
  • Potashner SJ , SunejaSK, BensonCG: Regulation of D-aspartate release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation.Exp. Neurol.148(1), 222–235 (1997).
  • Xu H , KotakVC, SanesDH: Conductive hearing loss disrupts synaptic and spike adaptation in developing auditory cortex.J. Neurosci.27(35), 9417–9426 (2007).
  • Tucci DL , CantNB, DurhamD: Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil.Laryngoscope109(9), 1359–1371 (1999).
  • Hutson KA , DurhamD, ImigT, TucciDL: Consequences of unilateral hearing loss: cortical adjustment to unilateral deprivation.Hear. Res.237(1–2), 19–31 (2008).
  • Knudsen EI , KnudsenPF, EsterlySD: A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl.J. Neurosci.4(4), 1012–1020 (1984).
  • Hutson KA , DurhamD, TucciDL: Reversible conductive hearing loss: restored activity in the central auditory system.Audiol. Neurootol.14(2), 69–77 (2009).
  • Pasic TR , RubelEW: Cochlear nucleus cell size is regulated by auditory nerve electrical activity.Otolaryngol. Head Neck Surg.104(1), 6–13 (1991).
  • Pasic TR , MooreDR, RubelEW: Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.J. Comp. Neurol.348(1), 111–120 (1994).
  • Kawai H , LazarR, MetherateR: Nicotinic control of axon excitability regulates thalamocortical transmission.Nat. Neurosci.10(9), 1168–1175 (2007).
  • De Villers-Sidano E , ChangeEF, BaoS, MerzenichMM: Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat.J. Neurosci.27(1), 180–189 (2007).
  • Dahmen JC , KingAJ: Learning to hear: plasticity of auditory cortical processing.Curr. Opin. Neurobiol.17(4), 456–464 (2007).
  • McAlpine D , MartinRL, MossopJE, MooreDR: Response properties of neurones in the inferior colliculus of the monaurally-deafened ferret to acoustic stimulation of the intact ear.J. Neurophysiol.78, 767–779 (1997).
  • Turrigiano G : Homeostatic signaling: the positive side of negative feedback.Curr. Opin. Neurobiol.17, 318–324 (2007).
  • Caspary DM , RazaA, Lawhorn Armour BA, Pippin J, Arneric SP: Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J. Neurosci.10, 2363–2372 (1990).
  • Milbrandt JC , AlbinRL, CasparyDM: Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus.Neurobiol. Aging15, 699–703 (1994).
  • Raza A , MilbrandtJC, ArnericSP, CasparyDM: Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function.Hear. Res.77, 221–230 (1994).
  • Caspary DM , MilbrandtJC, HelfertRH: Central auditory aging: GABA changes in the inferior colliculus.Exp. Gerontol.30(3–4), 349–360 (1995).
  • Caspary DM , LingL, TurnerJG, HughesLF: Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system.J. Exp. Biol.211, 1781–1791 (2008).
  • Willott JF , MilbrandtJC, BrossLS, CasparyDM: Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging.J. Comp. Neurol.385(3), 405–414 (1997).
  • Caspary DM , SchattemanTA, HughesLF: Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs.J. Neurosci.25(47), 10952–10959 (2005).
  • Gutiérrez A , KhanZU, De Blas AL: Immunocytochemical localization of γ 2 short and γ 2 long subunits of the GABAA receptor in the rat brain. J. Neurosci.14, 7168–7179 (1994).
  • Milbrandt JC , HunterC, CasparyDM: Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 244 rat inferior colliculus.J. Comp. Neurol.379(3), 455–465 (1997).
  • Caspary DM , HolderTM, HughesLF, MilbrandtJC, McKernanRM, NaritokuDK: Age-related changes in GABAA receptor subunit composition and function in rat auditory system.Neuroscience93, 307–312 (1999).
  • Krenning J , HughesLF, CasparyDM, HelfertRH: Age-related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats.Laryngoscope108, 443–465 (1998).
  • Bledsoe SC Jr, Nagase S, Miller JM, Altschuler RA: Deafness-induced plasticity in the mature central auditory system. Neuroreport7, 225–229 (1995).
  • Ling LL , HughesLF, CasparyDM: Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex.Neuroscience132, 1103–1113 (2005).
  • Burianova J , OudaL, ProfantO, SykaJ: Age-related changes in GAD levels in the central auditory system of the rat.Exp. Gerontol.44(3), 161–169 (2009).
  • Holt AG , AsakoM, LomaxCAet al.: Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity.J. Neurochem.93, 1069–1086 (2005).
  • Argence M , SaezI, SassuR, VassiasI, VidalPP, de Waele C: Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: an in situ and immunofluorescence study. Neuroscience141, 1193–1207 (2006).
  • Yueh B , ShapiroN, MacLeanCH, ShekellePG: Screening and management of adult hearing loss in primary care: scientific review.JAMA289(15), 1976–1985 (2003).
  • Kral A , MajernikV: On lateral inhibition in the auditory system.Gen. Physiol. Biophys.15(2), 109–127 (1996).
  • Eggermont JJ , RobertsLE: The neuroscience of tinnitus.Trends Neurosci.27(11), 676–682 (2004).
  • Bauer CA , BrozoskiTJ: Effect of gabapentin on the sensation and impact of tinnitus.Laryngoscope116(5), 675–681 (2006).
  • Sanes DH , ChokshiP: Glycinergic transmission influences the development of dendritic shape.Neuroreport3(4), 323–326 (1992).
  • Kirkwood A , BearMF: Elementary forms of synaptic plasticity in the visual cortex.Biol. Res.28(1), 73–80 (1995).
  • Hensch TK : Critical period mechanisms in developing visual cortex.Curr. Top. Dev. Biol.69, 215–237 (2005).
  • Möhler H , FritschyJM, CrestaniF, HenschT, RudolphU: Specific GABAA circuits in brain development and therapy.Biochem. Pharmacol.68(8), 1685–1690 (2004).
  • Ryugo DK , KretzmerEA, NiparkoJK: Restoration of auditory nerve synapses in cats by cochlear implants.Science310(5753), 1490–1492 (2005).
  • Lustig LR , LeakePA, SnyderRL, RebscherSJ: Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation.Hear. Res.74(1–2), 29–37 (1994).
  • Snyder R , LeakeP, RebscherS, BeitelR: Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation.J. Neurophysiol.73, 449–467 (1995).
  • Klinke R , KralA, HeidS, TilleinJ, HartmannR: Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation.Science285, 1729–1733 (1999).
  • Vollmer M , LeakePA, BeitelRE, RebscherSJ, SnyderRL: Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea.J. Neurophysiol.93(6), 3339–3355 (2005).
  • Snyder RL , RebscherSJ, CaoKL, LeakePA, KellyK: Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation.Hear. Res.50(1–2), 7–33 (1990).
  • Leake PA , SnyderRL, RebscherSJ, MooreCM, VollmerM: Plasticity in central representations in the inferior colliculus induced by single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness.Hear Res.147(1–2), 221–241 (2000).
  • Fallon JB , IrvineDR, ShepherdRK: Cochlear implant use following neonatal deafness influences the cochleotopic organization of the primary auditory cortex in cats.J. Comp. Neurol.512, 101–114 (2009).
  • Kral A , TilleinJ, HubkaPet al.: Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness.J. Neurosci.29(3), 811–827 (2009).
  • Argence M , VassiasI, KerhuelL, VidalPP, de Waele C: Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur. J. Neurosci.28, 1589–1602 (2008).
  • Möhler H , FritschyJM, RudolphU: A new benzodiazepine pharmacology.J. Pharmacol. Exp. Ther.300(1), 2–8 (2002).
  • Levanthal AG , WangY, PuM, ZhouY, MaY: GABA and its agonists improved visual cortical function in senescent monkeys.Science300(5620), 812–815 (2003).
  • Gleich O , HamannI, KlumpGM, KittelM, StrutzJ: Boosting GABA improves impaired auditory temporal resolution in the gerbil.Neuroreport14, 1877–1880 (2003).
  • Bauer J , Cooper-MahkornD: Tiagabine: efficacy and safety in partial seizures – current status.Neuropsychiatr. Dis. Treat.4(4), 731–736 (2008).
  • Addolorato G , LeggioL, AgabioR, ColomboG, GasbarriniG: Baclofen: a new drug for the treatment of alcohol dependence.Int. J. Clin. Pract.60(8), 1003–1008 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.