111
Views
0
CrossRef citations to date
0
Altmetric
Review

Opening Pandora‘s Jar: A Primer on the Putative Roles of Crmp2 In A Panoply of Neurodegenerative, Sensory and Motor Neuron, and Central Disorders

, , , , , & show all
Pages 749-771 | Published online: 07 Nov 2012

References

  • Goshima Y , NakamuraF, StrittmatterP, StrittmatterSM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature376(6540), 509–514 (1995).
  • Hedgecock EM , CulottiJG, ThomsonJN, PerkinsLA. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol.111(1), 158–170 (1985).
  • Geschwind DH , HockfieldS. Identification of proteins that are developmentally regulated during early cerebral corticogenesis in the rat. J. Neurosci.9(12), 4303–4317 (1989).
  • Minturn JE , FryerHJ, GeschwindDH, HockfieldS. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J. Neurosci.15(10), 6757–6766 (1995).
  • Byk T , DobranskyT, Cifuentes-DiazC, SobelA. Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. J. Neurosci.16(2), 688–701 (1996).
  • Hamajima N , MatsudaK, SakataS, TamakiN, SasakiM, NonakaM. A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Genetics180(1–2), 157–163 (1996).
  • Kitamura K , TakayamaM, HamajimaNet al. Characterization of the human dihydropyrimidinase-related protein 2 (DRP-2) gene. DNA Res.6(5), 291–297 (1999).
  • Morris DH , DubnauJ, ParkJH, RawlsJM Jr. Divergent functions through alternative splicing: roles of the Drosophila CRMP gene in pyrimidine metabolism, brain and behavior. Genetics191(4), 1227–1238 (2012).
  • Quinn CC , ChenE, KinjoTGet al. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J. Neurosci.23(7), 2815–2823 (2003).
  • Schmidt EF , StrittmatterSM. The CRMP family of proteins and their role in Sema3A signaling. Adv. Exp. Med. Biol.600, 1–11 (2007).
  • Fukada M , WatakabeI, Yuasa-KawadaJet al. Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family. J. Biol. Chem.275(48), 37957–37965 (2000).
  • Inagaki N , ChiharaK, ArimuraNet al. CRMP-2 induces axons in cultured hippocampal neurons. Nat. Neurosci.4(8), 781–782 (2001).
  • Nishimura T , FukataY, KatoKet al. CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat. Cell. Biol.5(9), 819–826 (2003).
  • Arimura N , MenagerC, FukataY, KaibuchiK. Role of CRMP-2 in neuronal polarity. J. Neurobiol.58(1), 34–47 (2004).
  • Yoshimura T , KawanoY, ArimuraN, KawabataS, KikuchiA, KaibuchiK. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell120(1), 137–149 (2005).
  • Minturn JE , GeschwindDH, FryerHJ, HockfieldS. Early postmitotic neurons transiently express TOAD-64, a neural specific protein. J. Comp. Neurol.355(3), 369–379 (1995).
  • Byk T , OzonS, SobelA. The Ulip family phosphoproteins – common and specific properties. Eur. J. Biochem.254(1), 14–24 (1998).
  • Gaetano C , MatsuoT, ThieleCJ. Identification and characterization of a retinoic acid-regulated human homologue of the unc-33-like phosphoprotein gene (hUlip) from neuroblastoma cells. J. Biol. Chem.272(18), 12195–12201 (1997).
  • Charrier E , ReibelS, RogemondV, AgueraM, ThomassetN, HonnoratJ. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol. Neurobiol.28(1), 51–64 (2003).
  • Ricard D , RogemondV, CharrierEet al. Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): coexistence with Ulip2/CRMP2 in Sem3- sensitive oligodendrocytes. J. Neurosci.21(18), 7203–7214 (2001).
  • Tahimic CG , TomimatsuN, NishigakiRet al. Evidence for a role of Collapsin response mediator protein-2 in signaling pathways that regulate the proliferation of non-neuronal cells. Biochem. Biophys. Res. Commun.340(4), 1244–1250 (2006).
  • Vincent P , ColletteY, MarignierRet al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J. Immunol.175(11), 7650–7660 (2005).
  • Vuaillat C , Varrin-DoyerM, BernardAet al. High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J. Neuroimmunol.193(1–2), 38–51 (2008).
  • Wang LH , StrittmatterSM. Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J. Neurochem.69(6), 2261–2269 (1997).
  • Yoneda A , Morgan-FisherM, WaitR, CouchmanJR, WewerUM. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II. Mol. Cell. Biol.32(10), 1788–1804 (2012).
  • Bretin S , ReibelS, CharrierEet al. Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J. Comp. Neurol.486(1), 1–17 (2005).
  • Deo RC , SchmidtEF, ElhabaziA, TogashiH, BurleySK, StrittmatterSM. Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO J.23(1), 9–22 (2004).
  • Stenmark P , OggD, FlodinSet al. The structure of human collapsin response mediator protein 2, a regulator of axonal growth. J. Neurochem.101(4), 906–917 (2007).
  • Majava V , LoytynojaN, ChenWQ, LubecG, KursulaP. Crystal and solution structure, stability and post-translational modifications of collapsin response mediator protein 2. FEBS J.275(18), 4583–4596 (2008).
  • Takahashi T , FournierA, NakamuraFet al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell99(1), 59–69 (1999).
  • Arimura N , InagakiN, ChiharaKet al. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J. Biol. Chem.275(31), 23973–23980 (2000).
  • Arimura N , MenagerC, KawanoYet al. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol. Cell. Biol.25(22), 9973–9984 (2005).
  • Hou ST , JiangSX, AylsworthAet al. CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J. Neurochem.111, 870–878 (2009).
  • Uchida Y , OhshimaT, YamashitaNet al. Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32. J. Biol. Chem.284(40), 27393–27401 (2009).
  • Yamashita N , OhshimaT, NakamuraFet al. Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J. Neurosci.32(4), 1360–1365 (2012).
  • Astle MV , OomsLM, ColeARet al. Identification of a proline-rich inositol polyphosphate 5-phosphatase (PIPP) collapsin response mediator protein 2 (CRMP2) complex that regulates neurite elongation. J. Biol. Chem.286(26), 23407–23418 (2011).
  • Zhu LQ , ZhengHY, PengCXet al. Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2. J. Neurosci.30(10), 3839–3848 (2010).
  • Cole AR , SoutarMP, RembutsuMet al. Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J. Biol. Chem.283(26), 18227–18237 (2008).
  • Cole RN , HartGW. Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem.79(5), 1080–1089 (2001).
  • Morinaka A , YamadaM, ItofusaRet al. Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal.4(170), ra26 (2011).
  • Zhang Z , OttensAK, SadasivanSet al. Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J. Neurotrauma.24(3), 460–472 (2007).
  • Brittain JM , ChenL, WilsonSMet al. Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J. Biol. Chem.286(43), 37778–37792 (2011).
  • Taghian K , LeeJY, PetratosS. Phosphorylation and cleavage of the family of collapsin response mediator proteins may play a central role in neurodegeneration after CNS trauma. J. Neurotrauma29(9), 1728–1735 (2012).
  • Rogemond V , AugerC, GiraudonPet al. Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J. Biol. Chem.283(21), 14751–14761 (2008).
  • Sun Y , FeiT, YangTet al. The suppression of CRMP2 expression by bone morphogenetic protein (BMP)–SMAD gradient signaling controls multiple stages of neuronal development. J. Biol. Chem.285(50), 39039–39050 (2010).
  • Kodama Y , MurakumoY, IchiharaM, KawaiK, ShimonoY, TakahashiM. Induction of CRMP-2 by GDNF and analysis of the CRMP-2 promoter region. Biochem. Biophys. Res.Commun.320(1), 108–115 (2004).
  • Hensley K , VenkovaK, ChristovA, GunningW, ParkJ. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol. Neurobiol.43(3), 180–191 (2011).
  • Fukata Y , ItohTJ, KimuraTet al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell. Biol.4(8), 583–591 (2002).
  • Quach TT , DucheminAM, RogemondVet al. Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons. Mol. Cell. Neurosci.25(3), 433–443 (2004).
  • Chae YC , LeeS, HeoKet al. Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity. Cell Signal21(12), 1818–1826 (2009).
  • Uchida Y , OhshimaT, SasakiYet al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer‘s disease. Genes Cells10(2), 165–179 (2005).
  • Lykissas MG , BatistatouAK, CharalabopoulosKA, BerisAE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc. Res.4(2), 143–151 (2007).
  • Kawano Y , YoshimuraT, TsuboiDet al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell. Biol.25(22), 9920–9935 (2005).
  • Pollitt AY , InsallRH. WASP and SCAR/WAVE proteins: the drivers of actin assembly. J. Cell. Sci.122(Pt 15), 2575–2578 (2009).
  • Chu CC , WangJJ, ChenKTet al. Neurotrophic effects of tianeptine on hippocampal neurons: a proteomic approach. J. Proteome Res.9(2), 936–944 (2010).
  • Arimura N , KimuraT, NakamutaSet al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev. Cell16(5), 675–686 (2009).
  • Zhang Z , MajavaV, GreffierA, HayesRL, KursulaP, WangKK. Collapsin response mediator protein-2 is a calmodulin-binding protein. Cell. Mol. Life Sci.66(3), 526–536 (2009).
  • Xu GF , O‘ConnellP, ViskochilDet al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell62(3), 599–608 (1990).
  • Patrakitkomjorn S , KobayashiD, MorikawaTet al. Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J. Biol. Chem.283(14), 9399–9413 (2008).
  • Wang Y , BrittainJM, WilsonSM, HingtgenCM, KhannaR. Altered calcium currents and axonal growth in Nf1 haploinsufficient mice. Transl. Neurosci.1(2), 106–114 (2010).
  • Brittain JM , PiekarzAD, WangY, KondoT, CumminsTR, KhannaR. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated Ca2+ channels. J. Biol. Chem.284(45), 31375–31390 (2009).
  • Chi XX , SchmutzlerBS, BrittainJM, HingtgenCM, NicolGD, KhannaR. Regulation of N-type voltage-gated calcium (CaV2.2) channels and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J. Cell. Sci.23, 4351–4362 (2009).
  • Catterall WA , FewAP. Calcium channel regulation and presynaptic plasticity. Neuron59(6), 882–901 (2008).
  • Al-Hallaq RA , ConradsTP, VeenstraTD, WentholdRJ. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci.27(31), 8334–8343 (2007).
  • Brittain JM , PanR, YouHet al. Disruption of NMDAR–CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Channels (Austin)6(1), 52–59 (2012).
  • Mileusnic R , RoseSP. The memory enhancing effect of the APP-derived tripeptide Ac-rER is mediated through CRMP2. J. Neurochem.118(4), 616–625 (2011).
  • Hensley K , VenkovaK, ChristovA. Emerging biological importance of central nervous system lanthionines. Molecules15(8), 5581–5594 (2010).
  • Petratos S , OzturkE, AzariMFet al. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain135(Pt 6), 1794–1818 (2012).
  • Ripsch MS , BallardCJ, KhannaM, HurleyJH, WhiteFA, KhannaR. A peptide uncoupling CRMP-2 from the presynaptic Ca2+ channel complex demonstrates efficacy in animal models of migraine and AIDS therapy-induced neuropathy. Transl. Neurosci.3(1), 1–8 (2012).
  • Brittain JM , DuarteDB, WilsonSMet al. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nat. Med.17(7), 822–829 (2011).
  • Wilson SM , BrittainJM, PiekarzADet al. Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel-CRMP-2 signaling complex. Channels (Austin)5(5), 449–456 (2011).
  • Wilson SM , XiongW, WangYet al. Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience210, 451–466 (2012).
  • Benedict JW , GettyAL, WishartTM, GillingwaterTH, PearceDA. Protein product of CLN6 gene responsible for variant late-onset infantile neuronal ceroid lipofuscinosis interacts with CRMP-2. J. Neurosci. Res.87(9), 2157–2166 (2009).
  • Uusi-Rauva K , LuiroK, TanhuanpaaKet al. Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin-Na+, K+ ATPase complex. Exp. Cell. Res.314(15), 2895–2905 (2008).
  • Haskell RE , CarrCJ, PearceDA, BennettMJ, DavidsonBL. Batten disease: evaluation of CLN3 mutations on protein localization and function. Hum. Mol. Genet.9(5), 735–744 (2000).
  • Jarvela I , LehtovirtaM, TikkanenR, KyttalaA, JalankoA. Defective intracellular transport of CLN3 is the molecular basis of Batten disease (JNCL). Hum. Mol. Genet.8(6), 1091–1098 (1999).
  • Jarvela I , SainioM, RantamakiTet al. Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease. Hum. Mol. Genet.7(1), 85–90 (1998).
  • Kremmidiotis G , LensinkIL, BiltonRLet al. The Batten disease gene product (CLN3p) is a Golgi integral membrane protein. Hum. Mol. Genet.8(3), 523–531 (1999).
  • Bronson RT , DonahueLR, JohnsonKR, TannerA, LanePW, FaustJR. Neuronal ceroid lipofuscinosis (NCLF), a new disorder of the mouse linked to chromosome 9. Am. J. Med. Genet.77(4), 289–297 (1998).
  • Mole SE , MichauxG, CodlinS, WheelerRB, SharpJD, CutlerDF. CLN6, which is associated with a lysosomal storage disease, is an endoplasmic reticulum protein. Exp. Cell. Res.298(2), 399–406 (2004).
  • Lebrun AH , StorchS, RuschendorfFet al. Retention of lysosomal protein CLN5 in the endoplasmic reticulum causes neuronal ceroid lipofuscinosis in Asian sibship. Hum. Mutat.30(5), e651–e661 (2009).
  • Lonka L , KyttalaA, RantaS, JalankoA, LehesjokiAE. The neuronal ceroid lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum. Mol. Genet.9(11), 1691–1697 (2000).
  • Roy S , ZhangB, LeeVM, TrojanowskiJQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol.109(1), 5–13 (2005).
  • Cannelli N , GaravagliaB, SimonatiAet al. Variant late infantile ceroid lipofuscinoses associated with novel mutations in CLN6. Biochem. Biophys. Res. Commun.379(4), 892–897 (2009).
  • Al-Muhaizea MA , Al-HassnanZN, ChedrawiA. Variant late infantile neuronal ceroid lipofuscinosis (CLN6 gene) in Saudi Arabia. Pediatr. Neurol.41(1), 74–76 (2009).
  • Heine C , QuitschA, StorchSet al. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Mol. Membr. Biol.24(1), 74–87 (2007).
  • Jalanko A , BraulkeT. Neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta1793(4), 697–709 (2009).
  • Arsov T , SmithKR, DamianoJet al. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am. J. Hum. Genet.88(5), 566–573 (2011).
  • Oswald MJ , PalmerDN, DamakS. Splicing variants in sheep CLN3, the gene underlying juvenile neuronal ceroid lipofuscinosis. Mol. Genet. Metab.67(2), 169–175 (1999).
  • Oswald MJ , KayGW, PalmerDN. Changes in GABAergic neuron distribution in situ and in neuron cultures in ovine (OCL6) Batten disease. Eur. J. Paediatr. Neurol.5(Suppl. A). S135–S142 (2001).
  • Oswald MJ , PalmerDN, KayGW, BarwellKJ, CooperJD. Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol. Dis.32(1), 50–65 (2008).
  • Yoshimura T , ArimuraN, KaibuchiK. Molecular mechanisms of axon specification and neuronal disorders. Ann. NY Acad. Sci.1086, 116–125 (2006).
  • Cole AR , KnebelA, MorriceNAet al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J. Biol. Chem.279(48), 50176–50180 (2004).
  • Gu Y , HamajimaN, IharaY. Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry39(15), 4267–4275 (2000).
  • Soutar MP , ThornhillP, ColeAR, SutherlandC. Increased CRMP2 phosphorylation is observed in Alzheimer‘s disease; does this tell us anything about disease development? Curr. Alzheimer Res.6(3), 269–278 (2009).
  • Takata K , KitamuraY, NakataYet al. Involvement of WAVE accumulation in Aβ/APP pathology-dependent tangle modification in Alzheimer‘s disease. Am. J. Pathol.175(1), 17–24 (2009).
  • Hebert LE , ScherrPA, BieniasJL, BennettDA, EvansDA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol.60(8), 1119–1122 (2003).
  • Selkoe DJ . Alzheimer‘s disease: genes, proteins, and therapy. Physiol. Rev.81(2), 741–766 (2001).
  • Bertram L . Alzheimer‘s disease genetics current status and future perspectives. Int. Rev. Neurobiol.84, 167–184 (2009).
  • Bertram L , TanziRE. Genome-wide association studies in Alzheimer‘s disease. Hum. Mol. Genet.18(R2), R137–R145 (2009).
  • Feulner TM , LawsSM, FriedrichPet al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol. Psychiatr.15(7), 756–766 (2010).
  • Harold D , AbrahamR, HollingworthPet al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer‘s disease. Nat. Genet.41(10), 1088–1093 (2009).
  • Butterfield DA , ReedT, NewmanSF, SultanaR. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer‘s disease and mild cognitive impairment. Free Radic. Biol. Med.43(5), 658–677 (2007).
  • Butterfield DA , DrakeJ, PocernichC, CastegnaA. Evidence of oxidative damage in Alzheimer‘s disease brain: central role for amyloid β-peptide. Trends Mol. Med.7(12), 548–554 (2001).
  • Markesbery WR . Oxidative stress hypothesis in Alzheimer‘s disease. Free Radic. Biol. Med.23(1), 134–147 (1997).
  • Nunomura A , MoreiraPI, LeeHGet al. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets6(6), 411–423 (2007).
  • Varadarajan S , YatinS, AksenovaM, ButterfieldDA. Review: Alzheimer‘s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol.130(2–3), 184–208 (2000).
  • Viola KL , VelascoPT, KleinWL. Why Alzheimer‘s is a disease of memory: the attack on synapses by Aβ oligomers (ADDLs). J. Nutr. Health Aging12(1), S51–S57 (2008).
  • Selkoe DJ . Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res.192(1), 106–113 (2008).
  • Drake J , LinkCD, ButterfieldDA. Oxidative stress precedes fibrillar deposition of Alzheimer‘s disease amyloid β-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging24(3), 415–420 (2003).
  • Demuro A , MinaE, KayedR, MiltonSC, ParkerI, GlabeCG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem.280(17), 17294–17300 (2005).
  • Yatin SM , VaradarajanS, ButterfieldDA. Vitamin E prevents Alzheimer‘s amyloid β-peptide (1–42)-induced neuronal protein oxidation and reactive oxygen species production. J. Alzheimers Dis.2(2), 123–131 (2000).
  • Quintanilla RA , MunozFJ, MetcalfeMJet al. Trolox and 17β-estradiol protect against amyloid β-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J. Biol. Chem.280(12), 11615–11625 (2005).
  • Subramaniam R , RoedigerF, JordanBet al. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J. Neurochem.69(3), 1161–1169 (1997).
  • Olivieri G , HessC, SavaskanEet al. Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased β-amyloid secretion. J. Pineal Res.31(4), 320–325 (2001).
  • Butterfield DA , Boyd-KimballD. The critical role of methionine 35 in Alzheimer‘s amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim. Biophys. Acta1703(2), 149–156 (2005).
  • Butterfield DA , SultanaR. Methionine-35 of aβ (1–42): importance for oxidative stress in Alzheimer disease. J. Amino Acids2011, 198430 (2011).
  • Bush AI , PettingellWH, MulthaupGet al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science265(5177), 1464–1467 (1994).
  • Pogocki D . Mutation of the Phe20 residue in Alzheimer‘s amyloid β-peptide might decrease its toxicity due to disruption of the Met35-cupric site electron transfer pathway. Chem. Res. Toxicol.17(3), 325–329 (2004).
  • Varadarajan S , KanskiJ, AksenovaM, LauderbackC, ButterfieldDA. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer‘s Aβ(1–42) and Aβ(25–35). J. Am. Chem. Soc.123(24), 5625–5631 (2001).
  • Bitan G , TarusB, VollersSSet al. A molecular switch in amyloid assembly: Met35 and amyloid β-protein oligomerization. J. Am. Chem Soc.125(50), 15359–15365 (2003).
  • Hou L , KangI, MarchantRE, ZagorskiMG. Methionine 35 oxidation reduces fibril assembly of the amyloid Aβ-(1–42) peptide of Alzheimer‘s disease. J. Biol. Chem.277(43), 40173–40176 (2002).
  • Johansson AS , BergquistJ, VolbrachtCet al. Attenuated amyloid-β aggregation and neurotoxicity owing to methionine oxidation. Neuroreport18(6), 559–563 (2007).
  • Kuo YM , KokjohnTA, BeachTGet al. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer‘s disease brains. J. Biol. Chem.276(16), 12991–12998 (2001).
  • Naslund J , SchierhornA, HellmanUet al. Relative abundance of Alzheimer A β amyloid peptide variants in Alzheimer disease and normal aging. Proc. Natl Acad. Sci. USA91(18), 8378–8382 (1994).
  • Sultana R , RobinsonRA, BaderLMet al. Do proteomics analyses provide insights into reduced oxidative stress in the brain of an Alzheimer disease transgenic mouse model with an M631L amyloid precursor protein substitution and thereby the importance of amyloid-β-resident methionine 35 in Alzheimer disease pathogenesis? Antioxid. Redox Signal. doi:10.1089/ars.2011.4470 (2012) (Epub ahead of print).
  • Castegna A , AksenovM, ThongboonkerdVet al. Proteomic identification of oxidatively modified proteins in Alzheimer‘s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem.82(6), 1524–1532 (2002).
  • Castegna A , AksenovM, AksenovaMet al. Proteomic identification of oxidatively modified proteins in Alzheimer‘s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med.33(4), 562–571 (2002).
  • Choi J , LeveyAI, WeintraubSTet al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson‘s and Alzheimer‘s diseases. J. Biol. Chem.279(13), 13256–13264 (2004).
  • Sultana R , Boyd-KimballD, PoonHFet al. Redox proteomics identification of oxidized proteins in Alzheimer‘s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging27(11), 1564–1576 (2006).
  • Perluigi M , SultanaR, CeniniGet al. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer‘s disease: Role of lipid peroxidation in Alzheimer‘s disease pathogenesis. Proteomics Clin. Appl.3(6), 682–693 (2009).
  • Sultana R , PoonHF, CaiJet al. Identification of nitrated proteins in Alzheimer‘s disease brain using a redox proteomics approach. Neurobiol. Dis.22(1), 76–87 (2006).
  • Riederer IM , SchiffrinM, KovariE, BourasC, RiedererBM. Ubiquitination and cysteine nitrosylation during aging and Alzheimer‘s disease. Brain Res. Bull.80(4–5), 233–241 (2009).
  • Cole AR , NobleW, van AaltenLet al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer‘s disease progression. J. Neurochem.103(3), 1132–1144 (2007).
  • Morfini G , SzebenyiG, BrownHet al. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J.23(11), 2235–2245 (2004).
  • Iijima K , AndoK, TakedaSet al. Neuron-specific phosphorylation of Alzheimer‘s β-amyloid precursor protein by cyclin-dependent kinase 5. J. Neurochem.75(3), 1085–1091 (2000).
  • Lee MS , KaoSC, LemereCAet al. APP processing is regulated by cytoplasmic phosphorylation. J. Cell. Biol.163(1), 83–95 (2003).
  • Yoshida H , WatanabeA, IharaY. Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer‘s disease. J. Biol. Chem.273(16), 9761–9768 (1998).
  • Rahajeng J , GiridharanSS, NaslavskyN, CaplanS. Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J. Biol. Chem.285(42), 31918–31922 (2010).
  • Sultana R , ButterfieldDA. Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem. Res.32(4–5), 655–662 (2007).
  • Shelton SB , JohnsonGV. Cyclin-dependent kinase-5 in neurodegeneration. J. Neurochem.88(6), 1313–1326 (2004).
  • Prusiner SB . Prions. Proc. Natl Acad. Sci. USA95(23), 13363–13383 (1998).
  • Mastrianni JA . The genetics of prion diseases. Genet. Med.12(4), 187–195 (2010).
  • Gerber R , Tahiri-AlaouiA, HorePJ, JamesW. Conformational pH dependence of intermediate states during oligomerization of the human prion protein. Protein Sci.17(3), 537–544 (2008).
  • Shinkai-Ouchi F , YamakawaY, HaraHet al. Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases. Proteome Sci.8, 53 (2010).
  • Bento-Abreu A , VanDP, Van Den Bosch L, Robberecht W. The neurobiology of amyotrophic lateral sclerosis. Eur. J. Neurosci.31(12), 2247–2265 (2010).
  • Hensley K , MhatreM, MouSet al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid. Redox. Signal.8(11–12), 2075–2087 (2006).
  • Clement AM , NguyenMD, RobertsEAet al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science302(5642), 113–117 (2003).
  • Fischer LR , CulverDG, TennantPet al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol.185(2), 232–240 (2004).
  • Lin H , SchlaepferWW. Role of neurofilament aggregation in motor neuron disease. Ann. Neurol.60(4), 399–406 (2006).
  • Bilsland LG , SahaiE, KellyG, GoldingM, GreensmithL, SchiavoG. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad Sci. USA107(47), 20523–20528 (2010).
  • Fanara P , BanerjeeJ, HueckRVet al. Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J. Biol.Chem.282(32), 23465–23472 (2007).
  • De Winter F , VoT, StamFJet al. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol. Cell. Neurosci.32(1–2), 102–117 (2006).
  • Wakatsuki S , SaitohF, ArakiT. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat. Cell. Biol.13(12), 1415–1423 (2011).
  • Duplan L , BernardN, CasseronWet al. Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death. J. Neurosci.30(2), 785–796 (2010).
  • Hensley K , ChristovA, KamatSet al. Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J. Neurosci.30(8), 2979–2988 (2010).
  • Menon KN , SteerDL, ShortM, PetratosS, SmithI, BernardCC. A novel unbiased proteomic approach to detect the reactivity of cerebrospinal fluid in neurological diseases. Mol. Cell. Proteomics10(6), M110.000042 (2011).
  • Melnikova I . Pain market. Nat. Rev. Drug Discov.9(8), 589–590 (2010).
  • Harstall C . How prevalent is chronic pain? Pain Clin. UpdatesX, 1–4 (2003).
  • Doggrell SA . Intrathecal ziconotide for refractory pain. Expert Opin. Investig. Drugs13(7), 875–877 (2004).
  • Schmidtko A , LotschJ, FreynhagenR, GeisslingerG. Ziconotide for treatment of severe chronic pain. Lancet375(9725), 1569–1577 (2010).
  • Rauck RL , WallaceMS, BurtonAW, KapuralL, NorthJM. Intrathecal ziconotide for neuropathic pain: a review. Pain Pract.9(5), 327–337 (2009).
  • Skov MJ , BeckJC, de Kater AW, Shopp GM. Nonclinical safety of ziconotide: an intrathecal analgesic of a new pharmaceutical class. Int. J. Toxicol.26(5), 411–421 (2007).
  • Abbadie C , McManusOB, SunSYet al. Analgesic effects of a substituted N-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel 2 blocker. J. Pharmacol. Exp. Ther.334(2), 545–555 (2010).
  • Swensen AM , HerringtonJ, BugianesiRMet al. Characterization of the substituted N-triazole oxindole, TROX-1, a small molecule, state-dependent inhibitor of CaV2 calcium channels. Mol. Pharmacol.81(3), 488–497 (2011).
  • Wang Y , BrittainJM, WilsonSM, KhannaR. Emerging roles of collapsin response mediator proteins (CRMPs) as regulators of voltage-gated calcium channels and synaptic transmission. Commun. Integr. Biol.3(2), 172–175 (2010).
  • Snutch TP . Targeting chronic and neuropathic pain: the N-type calcium channel comes of age. NeuroRx2(4), 662–670 (2005).
  • Suzuki Y , NakagomiS, NamikawaKet al. Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat. J. Neurochem.86(4), 1042–1050 (2003).
  • Gogel S , LangeS, LeungKY, GreeneND, FerrettiP. Post-translational regulation of Crmp in developing and regenerating chick spinal cord. Dev. Neurobiol.70(6), 456–471 (2010).
  • Jiang SX , KapplerJ, ZurakowskiB, DesboisA, AylsworthA, HouST. Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain. Eur. J. Neurosci.26(4), 801–809 (2007).
  • Chung MA , LeeJE, LeeJY, KoMJ, LeeST, KimHJ. Alteration of collapsin response mediator protein-2 expression in focal ischemic rat brain. Neuroreport16(15), 1647–1653 (2005).
  • Chen A , LiaoWP, LuQ, WongWS, WongPT. Upregulation of dihydropyrimidinase-related protein 2, spectrin α II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats – a proteomics approach. Neurochem. Int.50(7–8), 1078–1086 (2007).
  • Zhang Z , OttensAK, SadasivanSet al. Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J. Neurotrauma.24(3), 460–472 (2007).
  • Bretin S , RogemondV, MarinPet al. Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J. Neurochem.98(4), 1252–1265 (2006).
  • Touma E , KatoS, FukuiK, KoikeT. Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur. J. Neurosci.26(12), 3368–3381 (2007).
  • Bu X , ZhangN, YangXet al. Proteomic analysis of cPKCβII-interacting proteins involved in HPC-induced neuroprotection against cerebral ischemia of mice. J. Neurochem.117(2), 346–356 (2011).
  • Pitkanen A . Therapeutic approaches to epileptogenesis – hope on the horizon. Epilepsia51(Suppl. 3), S2–S17 (2010).
  • Shorvon SD . The etiologic classification of epilepsy. Epilepsia52(6), 1052–1057 (2011).
  • Pitkänen A , LukasiukK. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav.14(Suppl. 1), S16–S25 (2009).
  • Temkin NR . Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia42(4), 515–524 (2001).
  • Nadler JV . The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res.28(11), 1649–1658 (2003).
  • Sutula TP , DudekFE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog. Brain Res.163, 541–563 (2007).
  • Holtmaat AJ , GorterJA, DeWJet al. Transient downregulation of Sema3A mRNA in a rat model for temporal lobe epilepsy. A novel molecular event potentially contributing to mossy fiber sprouting. Exp. Neurol.182(1), 142–150 (2003).
  • Murakami Y , SutoF, ShimizuM, ShinodaT, KameyamaT, FujisawaH. Differential expression of plexin-A subfamily members in the mouse nervous system. Dev. Dyn.220(3), 246–258 (2001).
  • Errington AC , StohrT, HeersC, LeesG. The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol. Pharmacol.73(1), 157–169 (2008).
  • Danzer SC , HeX, McNamaraJO. Ontogeny of seizure-induced increases in BDNF immunoreactivity and TrkB receptor activation in rat hippocampus. Hippocampus14(3), 345–355 (2004).
  • Heinrich C , LahteinenS, SuzukiFet al. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol. Dis.42(1), 35–47 (2011).
  • He XP , KotloskiR, NefS, LuikartBW, ParadaLF, McNamaraJO. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron43(1), 31–42 (2004).
  • Binder DK , RoutbortMJ, McNamaraJO. Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus. J. Neurosci.19(11), 4616–4626 (1999).
  • He XP , MinichielloL, KleinR, McNamaraJO. Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus. J. Neurosci.22(17), 7502–7508 (2002).
  • McKinney RA , DebanneD, GahwilerBH. Thompson SM. Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: implications for the genesis of posttraumatic epilepsy. Nat. Med.3(9), 990–996 (1997).
  • Dinocourt C , GallagherSE, ThompsonSM. Injury-induced axonal sprouting in the hippocampus is initiated by activation of trkB receptors. Eur. J. Neurosci.24(7), 1857–1866 (2006).
  • Koyama R , IkegayaY. Mossy fiber sprouting as a potential therapeutic target for epilepsy. Curr. Neurovasc. Res.1(1), 3–10 (2004).
  • Johnston-Wilson NL , SimsCD, HofmannJPet al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol. Psychiatr.5(2), 142–149 (2000).
  • Nakata K , UjikeH, SakaiAet al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol. Psychiatr.53(7), 571–576 (2003).
  • Fallin MD , LasseterVK, AvramopoulosDet al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am. J. Hum. Genet.77(6), 918–936 (2005).
  • Zhou K , YangY, GaoLet al. NMDA receptor hypofunction induces dysfunctions of energy metabolism and semaphorin signaling in rats: a synaptic proteome study. Schizophr. Bull.38(3), 579–591 (2012).
  • Wu CC , ChenHC, ChenSJet al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics8(2), 316–332 (2008).
  • Varrin-Doyer M , VincentP, CavagnaSet al. Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J. Biol. Chem.284(19), 13265–13276 (2009).
  • Weitzdoerfer R , FountoulakisM, LubecG. Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. J. Neural. Transm. Suppl. (61), 95–107 (2001).
  • Brown M , JacobsT, EickholtBet al. α2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J. Neurosci.24(41), 8994–9004 (2004).
  • Cole AR , CauseretF, YadirgiGet al. Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J. Biol. Chem.281(24), 16591–16598 (2006).
  • Pawlik M , OteroDA, ParkM, FischerWH, LevyE, SaitohT. Proteins that bind to the RERMS region of β amyloid precursor protein. Biochem. Biophys. Res. Commun.355(4), 907–912 (2007).
  • Ip JP , ShiL, ChenYet al. α2-chimaerin controls neuronal migration and functioning of the cerebral cortex through CRMP-2. Nat. Neurosci.15(1), 39–47 (2011).
  • Leung T , NgY, CheongAet al. p80 ROKα binding protein is a novel splice variant of CRMP-1 which associates with CRMP-2 and modulates RhoA-induced neuronal morphology. FEBS Lett.532(3), 445–449 (2002).
  • Inatome R , TsujimuraT, HitomiTet al. Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain. J. Biol. Chem.275(35), 27291–27302 (2000).
  • Brot S , RogemondV, PerrotVet al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J. Neurosci.30(32), 10639–10654 (2010).
  • Arimura N , HattoriA, KimuraTet al. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity. J. Neurochem.111(2), 380–390 (2009).
  • Kimura T , WatanabeH, IwamatsuA, KaibuchiK. Tubulin and CRMP-2 complex is transported via Kinesin-1. J. Neurochem.93(6), 1371–1382 (2005).
  • Doty P , RuddGD, StoehrT, ThomasD. Lacosamide. Neurotherapeutics4(1), 145–148 (2007).
  • Errington AC , CoyneL, StohrT, SelveN, LeesG. Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology50(8), 1016–1029 (2006).
  • Wang Y , BrittainJM, JareckiBWet al. In silico docking and electrophysiological characterization of lacosamide binding sites on collapsin response mediator protein 2 (CRMP-2) identifies a pocket important in modulating sodium channel slow inactivation. J. Biol. Chem.285(33), 25296–25307 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.