46
Views
0
CrossRef citations to date
0
Altmetric
Review

Axonal Tract Tracing For Delineating Interacting Brain Regions: Implications For Alzheimer‘s Disease-Associated Memory

, &
Pages 89-98 | Published online: 16 Dec 2013

References

  • Witter MP , GroenewegenHJ, Lopes da Silva FH, Lohman AH. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol.33(3), 161–253 (1989).
  • Ramony Cajal S . [Notes on the fine anatomy of the large brain]. Z. Wissensch. Zool.56, 615–672 (1893).
  • Van Hoesen GW , PandyaDN. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res.95(1), 39–59 (1975).
  • Steward O , ScovilleSA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol.169(3), 347–370 (1976).
  • Witter MP , GroenewegenHJ. Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J. Comp. Neurol.224(3), 371–385 (1984).
  • Amaral DG , WitterMP. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience31(3), 571–591 (1989).
  • van Groen T , MiettinenP, KadishI. The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus13(1), 133–149 (2003).
  • Pohle W , OttT, Muller-WeldeP. Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J. Hirnforsch.25(1), 1–10 (1984).
  • Dolorfo CL , AmaralDG. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J. Comp. Neurol.398(1), 25–48 (1998).
  • Ruth RE , CollierTJ, RouttenbergA. Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells. J. Comp. Neurol.209(1), 69–78 (1982).
  • Ruth RE , CollierTJ, RouttenbergA. Topographical relationship between the entorhinal cortex and the septotemporal axis of the dentate gyrus in rats: II. Cells projecting from lateral entorhinal subdivisions. J. Comp. Neurol.270(4), 506–516 (1988).
  • Hjorth-Simonsen A , JeuneB. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol.144(2), 215–232 (1972).
  • Deller T , HaasCA, FrotscherM. Sprouting in the hippocampus after entorhinal cortex lesion is layer-specific but not translaminar: which molecules may be involved? Restor. Neurol. Neurosci.19(3–4), 159–167 (2001).
  • von Gunten A , KovariE, BussiereTet al. Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer‘s disease. Neurobiol. Aging27(2), 270–277 (2006).
  • Kadish I , Van Groen T. Low levels of estrogen significantly diminish axonal sprouting after entorhinal cortex lesions in the mouse. J. Neurosci.22(10), 4095–4102 (2002).
  • Deller T , HaasCA, FrotscherM. Reorganization of the rat fascia dentata after a unilateral entorhinal cortex lesion. Role of the extracellular matrix. Ann. NY Acad. Sci.911, 207–220 (2000).
  • van Groen T . Entorhinal cortex of the mouse: cytoarchitectonical organization. Hippocampus11(4), 397–407 (2001).
  • Lorente De Nó R . Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol.46, 113–177 (1934).
  • Blackstad TW . Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J. Comp. Neurol.105(3), 417–537 (1956).
  • West MJ , AndersenAH. An allometric study of the area dentata in the rat and mouse. Brain Res.2(3), 317–348 (1980).
  • van Groen T , KadishI, WyssJM. Species differences in the projections from the entorhinal cortex to the hippocampus. Brain Res. Bull.57(3–4), 553–556 (2002).
  • Suzuki WA , AmaralDG. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci.14(3 Pt 2), 1856–1877 (1994).
  • Witter MP , AmaralDG. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J. Comp. Neurol.307(3), 437–459 (1991).
  • van Groen T , van Haren FJ, Witter MP, Groenewegen HJ. The organization of the reciprocal connections between the subiculum and the entorhinal cortex in the cat: I. A neuroanatomical tracing study. J. Comp. Neurol.250(4), 485–497 (1986).
  • Phinney AL , DellerT, StalderMet al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci.19(19), 8552–8559 (1999).
  • Amaral DG , InsaustiR, CowanWM. The commissural connections of the monkey hippocampal formation. J. Comp. Neurol.224(3), 307–336 (1984).
  • Kondo H , LavenexP, AmaralDG. Intrinsic connections of the macaque monkey hippocampal formation: II. CA3 connections. J. Comp. Neurol.515(3), 349–377 (2009).
  • Swanson LW , SawchenkoPE, CowanWM. Evidence for collateral projections by neurons in Ammon‘s horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat. J. Neurosci.1(5), 548–559 (1981).
  • Laurberg S . Commissural and intrinsic connections of the rat hippocampus. J. Comp. Neurol.184(4), 685–708 (1979).
  • Witter MP , Van Hoesen GW, Amaral DG. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J. Neurosci.9(1), 216–228 (1989).
  • Kadish I , van Groen T. Lesion-induced hippocampal plasticity in transgenic Alzheimer‘s disease mouse models: influences of age, genotype, and estrogen. J. Alzheimers Dis.18(2), 429–445 (2009).
  • de la Monte SM . Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer‘s disease. Ann. Neurol.25(5), 450–459 (1989).
  • Laakso MP , VaurioO, SavolainenLet al. A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism. Behav. Brain Res.109(2), 177–186 (2000).
  • Laakso MP , FrisoniGB, KononenMet al. Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer‘s disease: a morphometric MRI study. Biol. Psychiatry47(12), 1056–1063 (2000).
  • Stranahan AM , MattsonMP. Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer‘s disease. Neural Plast.2010, 108190 (2010).
  • Kordower JH , ChuY, StebbinsGTet al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann. Neurol.49(2), 202–213 (2001).
  • Gomez-Isla T , PriceJL, MckeelDW Jr, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer‘s disease. J. Neurosci.16(14), 4491–4500 (1996).
  • Hyman BT , Van Hoesen GW, Damasio AR. Alzheimer‘s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann. Neurol.22(1), 37–40 (1987).
  • Cabalka LM , HymanBT, GoodlettCR, RitchieTC, Van Hoesen GW. Alteration in the pattern of nerve terminal protein immunoreactivity in the perforant pathway in Alzheimer‘s disease and in rats after entorhinal lesions. Neurobiol. Aging13(2), 283–291 (1992).
  • Mielke MM , OkonkwoOC, OishiKet al. Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer‘s disease. Alzheimer‘s Dement.8(2), 105–113 (2012).
  • Oishi K , MielkeMM, AlbertM, LyketsosCG, MoriS. The fornix sign: a potential sign for Alzheimer‘s disease based on diffusion tensor imaging. J. Neuroimaging22(4), 365–374 (2012).
  • Schmued LC , RaymickJ, PauleMG, DumasM, SarkarS. Characterization of myelin pathology in the hippocampal complex of a transgenic mouse model of Alzheimer‘s disease. Curr. Alzheimers Res.10(1), 30–37 (2013).
  • Yassa MA , MuftulerLT, StarkCE. Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. Proc. Natl Acad. Sci. USA107(28), 12687–12691 (2010).
  • Hyman BT , KromerLJ, Van Hoesen GW. Reinnervation of the hippocampal perforant pathway zone in Alzheimer‘s disease. Ann. Neurol.21(3), 259–267 (1987).
  • Cotman CW , AndersonKJ. Synaptic plasticity and functional stabilization in the hippocampal formation: possible role in Alzheimer‘s disease. Adv. Neurol.47, 313–335 (1988).
  • Hyman BT , Van Hoesen GW, Kromer LJ, Damasio AR. Perforant pathway changes and the memory impairment of Alzheimer‘s disease. Ann. Neurol.20(4), 472–481 (1986).
  • Deller T , Del Turco D, Rappert A, Bechmann I. Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. Prog. Brain Res.163, 501–528 (2007).
  • Van Groen T , LiuL, IkonenS, KadishI. Diffuse amyloid deposition, but not plaque number, is reduced in amyloid precursor protein/presenilin 1 double-transgenic mice by pathway lesions. Neuroscience119(4), 1185–1197 (2003).
  • Arendt T . Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer‘s disease. Int. J. Dev. Neurosci.19(3), 231–245 (2001).
  • Arendt T . Synaptic degeneration in Alzheimer‘s disease. Acta Neuropathol.118(1), 167–179 (2009).
  • Spires-Jones TL , Meyer-LuehmannM, OsetekJDet al. Impaired spine stability underlies plaque-related spine loss in an Alzheimer‘s disease mouse model. Am. J. Pathol.171(4), 1304–1311 (2007).
  • Shankar GM , LiS, MehtaTHet al. Amyloid-beta protein dimers isolated directly from Alzheimer‘s brains impair synaptic plasticity and memory. Nat. Med.14(8), 837–842 (2008).
  • Arendt T . Alzheimer‘s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience102(4), 723–765 (2001).
  • Holtmaat A , SvobodaK. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci.10(9), 647–658 (2009).
  • Swaab DF . Brain aging and Alzheimer‘s disease, ‘wear and tear‘ versus ‘use it or lose it‘. Neurobiol. Aging12(4), 317–324 (1991).
  • Braak H , BraakE. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol.82(4), 239–259 (1991).
  • Braak H , BraakE. Staging of Alzheimer‘s disease-related neurofibrillary changes. Neurobiol. Aging16(3), 271–278; discussion 278–284 (1995).
  • Arendt T , BrucknerMK, GertzHJ, MarcovaL. Cortical distribution of neurofibrillary tangles in Alzheimer‘s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience83(4), 991–1002 (1998).
  • Small SA , SchobelSA, BuxtonRB, WitterMP, BarnesCA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci.12(10), 585–601 (2011).
  • Hardy J , ReveszT. The spread of neurodegenerative disease. N. Engl. J. Med.366(22), 2126–2128 (2012).
  • Walker LC , DiamondMI, DuffKE, HymanBT. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol.70(3), 304–310 (2013).
  • Wu JW , HermanM, LiuLet al. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem.288(3), 1856–1870 (2013).
  • Van Hoesen GW , HymanBT. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer‘s disease. Prog. Brain Res.83, 445–457 (1990).
  • Matthews PM , FilippiniN, DouaudG. Brain structural and functional connectivity and the progression of neuropathology in Alzheimer‘s disease. J. Alzheimers Dis.33(Suppl. 1), S163–S172 (2013).
  • Agosta F , PievaniM, GeroldiC, CopettiM, FrisoniGB, FilippiM. Resting state fMRI in Alzheimer‘s disease: beyond the default mode network. Neurobiol. Aging33(8), 1564–1578 (2012).
  • Filippi M , AgostaF. Structural and functional network connectivity breakdown in Alzheimer‘s disease studied with magnetic resonance imaging techniques. J. Alzheimers Dis.24(3), 455–474 (2011).
  • Huang H , FanX, WeinerMet al. Distinctive disruption patterns of white matter tracts in Alzheimer‘s disease with full diffusion tensor characterization. Neurobiol. Aging33(9), 2029–2045 (2012).
  • Fieremans E , BenitezA, JensenJHet al. Novel white matter tract integrity metrics sensitive to Alzheimer disease progression. AJNR Am. J. Neuroradiol.34(11), 2105–2112 (2013).
  • Zerbi V , KleinnijenhuisM, FangXet al. Gray and white matter degeneration revealed by diffusion in an Alzheimer mouse model. Neurobiol. Aging34(5), 1440–1450 (2013).
  • Johnson DK , BarrowW, AndersonRet al. Diagnostic utility of cerebral white matter integrity in early Alzheimer‘s disease. Int. J. Neurosci.120(8), 544–550 (2010).
  • Chao LL , DecarliC, KrigerSet al. Associations between white matter hyperintensities and beta amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PLoS ONE8(6), e65175 (2013).
  • Clerx L , VisserPJ, VerheyF, AaltenP. New MRI markers for Alzheimer‘s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. J. Alzheimers Dis.29(2), 405–429 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.