173
Views
0
CrossRef citations to date
0
Altmetric
Review

CNS Autoimmune Disease after Streptococcus Pyogenes Infections: Animal Models, Cellular Mechanisms and Genetic Factors

, , &
Pages 63-76 | Received 11 Dec 2016, Accepted 20 Jan 2016, Published online: 22 Feb 2016

References

  • Ralph AP , CarapetisJR. Group a streptococcal diseases and their global burden. Curr. Top Microbiol. Immunol.368, 1–27 (2013).
  • Cunningham MW . Streptococcus and rheumatic fever. Curr. Opin. Rheumatol.24(4), 408–416 (2012).
  • Martin WJ , SteerAC, SmeestersPRet al. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun. Rev.14(8), 710–725 (2015).
  • Cunningham MW . Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int. Rev. Immunol.33(4), 314–329 (2014).
  • Park HS , FrancisKP, YuJ, ClearyPP. Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A streptococcus. J. Immunol.171(5), 2532–2537 (2003).
  • Debertin AS , TschernigT, TonjesH, KleemannWJ, TrogerHD, PabstR. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin. Exp. Immunol.134(3), 503–507 (2003).
  • Cardoso F , EduardoC, SilvaAP, MotaCC. Chorea in fifty consecutive patients with rheumatic fever. Mov. Disord.12(5), 701–703 (1997).
  • Swedo SE . Sydenham's chorea. A model for childhood autoimmune neuropsychiatric disorders. JAMA272(22), 1788–1791 (1994).
  • Murphy TK , KurlanR, LeckmanJ. The immunobiology of Tourette's disorder, pediatric autoimmune neuropsychiatric disorders associated with Streptococcus, and related disorders: a way forward. J. Child Adolesc. Psychopharmacol.20(4), 317–331 (2010).
  • Murphy TK , StorchEA, LewinAB, EdgePJ, GoodmanWK. Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Pediatr.160(2), 314–319 (2012).
  • Swedo SE . Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Mol. Psychiatry7(Suppl. 2), S24–S25 (2002).
  • Murphy TK , GerardiDM, LeckmanJF. Pediatric acute-onset neuropsychiatric syndrome. Psychiatr. Clin. North Am.37(3), 353–374 (2014).
  • Williams KA , SwedoSE. Post-infectious autoimmune disorders: Sydenham's chorea, PANDAS and beyond. Brain Res.1617, 144–154 (2015).
  • Macerollo A , MartinoD. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS): an evolving concept. Tremor Other Hyperkinet. Mov.3, 167 (2013).
  • Stagi S , RiganteD, LepriG, BertiniF, Matucci-CerinicM, FalciniF. Evaluation of autoimmune phenomena in patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Autoimmun. Rev.13(12), 1236–1240 (2014).
  • Dale RC , BrilotF. Autoimmune basal ganglia disorders. J. Child Neurol.27(11), 1470–1481 (2012).
  • Granata T , CrossH, TheodoreW, AvanziniG. Immune-mediated epilepsies. Epilepsia52(Suppl. 3), 5–11 (2012).
  • Kirvan CA , SwedoSE, SniderLA, CunninghamMW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J. Neuroimmunol.179(1–2), 173–179 (2006).
  • Diamond B , HonigG, MaderS, BrimbergL, VolpeBT. Brain-reactive antibodies and disease. Annu. Rev. Immunol.31, 345–385 (2013).
  • Hoffman KL , HornigM, YaddanapudiK, JabadoO, LipkinWI. A murine model for neuropsychiatric disorders associated with group A beta-hemolytic streptococcal infection. J. Neurosci.24(7), 1780–1791 (2004).
  • Yaddanapudi K , HornigM, SergeRet al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol. Psychiatry15(7), 712–726 (2010).
  • Brimberg L , BenharI, Mascaro-BlancoAet al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology37(9), 2076–2087 (2012).
  • Lotan D , BenharI, AlvarezKet al. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats. Brain Behav. Immun.38, 249–262 (2014).
  • Rush CM , GovanBL, SikderS, WilliamsNL, KetheesanN. Animal models to investigate the pathogenesis of rheumatic heart disease. Front Pediatr.2, 116 (2014).
  • Macri S , CeciC, OnoriMPet al. Mice repeatedly exposed to group-A beta-haemolytic streptococcus show perseverative behaviors, impaired sensorimotor gating, and immune activation in rostral diencephalon. Sci. Rep.5, 13257 (2015).
  • Dileepan T , SmithED, KnowlandDet al. Group A streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J. Clin. Invest.126(1), 303–317 (2016).
  • Kumar A , WilliamsMT, ChuganiHT. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and tourette syndrome: a positron emission tomographic (PET) study using 11C-[R]-PK11195. J. Child Neurol.30(6), 749–756 (2015).
  • Giedd JN , RapoportJL, GarveyMA, PerlmutterS, SwedoSE. MRI assessment of children with obsessive–compulsive disorder or tics associated with streptococcal infection. Am. J. Psychiatry157(2), 281–283 (2000).
  • Swedo SE , SeidlitzJ, KovacevicMet al. Clinical presentation of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections in research and community settings. J. Child Adolesc. Psychopharmacol.25(1), 26–30 (2015).
  • Cox CJ , SharmaM, LeckmanJFet al. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: implications in human disease. J. Immunol.191(11), 5524–5541 (2013).
  • Cunningham MW , CoxCJ. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta Physiol (Oxf) doi:10.1111/apha.12614 (2015) ( Epub ahead of print).
  • Nordenankar K , BergforsA, Wallen-MackenzieA. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse. Ups J. Med. Sci. doi:10.3109/03009734.2015.1032454 (2015) ( Epub ahead of print).
  • Tordera RM , TotterdellS, WojcikSMet al. Enhanced anxiety, depressive-like behaviour and impaired recognition memory in mice with reduced expression of the vesicular glutamate transporter 1 (VGLUT1). Eur. J. Neurosci.25(1), 281–290 (2007).
  • Boardman L , Van Der MerweL, LochnerCet al. Investigating SAPAP3 variants in the etiology of obsessive–compulsive disorder and trichotillomania in the South African white population. Compr. Psychiatry52(2), 181–187 (2011).
  • Zuchner S , WendlandJR, Ashley-KochAEet al. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol. Psychiatry14(1), 6–9 (2009).
  • Welch JM , LuJ, RodriguizRMet al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature448(7156), 894–900 (2007).
  • D'Antoni S , SpatuzzaM, BonaccorsoCMet al. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with intellectual disability and autism. Neurosci. Biobehav. Rev.46(Pt 2), 228–241 (2014).
  • Bronfeld M , IsraelashviliM, Bar-GadI. Pharmacological animal models of Tourette syndrome. Neurosci. Biobehav. Rev.37(6), 1101–1119 (2013).
  • Zhao Z , NelsonAR, BetsholtzC, ZlokovicBV. Establishment and dysfunction of the blood–brain barrier. Cell163(5), 1064–1078 (2015).
  • Pepper M , LinehanJL, PaganAJet al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol.11(1), 83–89 (2010).
  • Wang B , DileepanT, BriscoeSet al. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection. Proc. Natl Acad. Sci. USA107(13), 5937–5942 (2010).
  • Dileepan T , LinehanJL, MoonJJ, PepperM, JenkinsMK, ClearyPP. Robust antigen specific th17 T cell response to group A streptococcus is dependent on IL-6 and intranasal route of infection. PLoS Pathog.7(9), e1002252 (2011).
  • Dileepan T , SmithED, KnowlandDet al. Repeated GAS intranasal exposure promotes CNS entry of GAS-specific Th17 cells and IgG. J. Clin. Invest.126(1), 1–15 (2016).
  • Murphy TK , SniderLA, MutchPJet al. Relationship of movements and behaviors to Group A streptococcus infections in elementary school children. Biol. Psychiatry61(3), 279–284 (2007).
  • Koboziev I , Jones-HallY, ValentineJF, WebbCR, FurrKL, GrishamMB. Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases. Inflamm. Bowel Dis.21(7), 1652–1673 (2015).
  • Singer HS , Mascaro-BlancoA, AlvarezKet al. Neuronal antibody biomarkers for Sydenham's chorea identify a new group of children with chronic recurrent episodic acute exacerbations of tic and obsessive compulsive symptoms following a streptococcal infection. PLoS ONE10(3), e0120499 (2015).
  • Cox CJ , ZuccoloAJ, EdwardsEVet al. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive–compulsive disorder. J. Child Adolesc. Psychopharmacol.25(1), 76–85 (2015).
  • Ben-Pazi H , StonerJA, CunninghamMW. Dopamine receptor autoantibodies correlate with symptoms in Sydenham's chorea. PLoS ONE8(9), e73516 (2013).
  • Sinmaz N , AmatouryM, MerhebV, RamanathanS, DaleRC, BrilotF. Autoantibodies in movement and psychiatric disorders: updated concepts in detection methods, pathogenicity, and CNS entry. Ann. N Y Acad. Sci.1351(1), 22–38 (2015).
  • Latimer ME , L'etoileN, SeidlitzJ, SwedoSE. Therapeutic plasma apheresis as a treatment for 35 severely ill children and adolescents with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Child Adolesc. Psychopharmacol.25(1), 70–75 (2015).
  • Kovacevic M , GrantP, SwedoSE. Use of intravenous immunoglobulin in the treatment of twelve youths with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Child Adolesc. Psychopharmacol.25(1), 65–69 (2015).
  • Dale RC , MerhebV, PillaiSet al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain135(Pt 11), 3453–3468 (2012).
  • Morer A , LazaroL, SabaterL, MassanaJ, CastroJ, GrausF. Antineuronal antibodies in a group of children with obsessive–compulsive disorder and Tourette syndrome. J. Psychiatr. Res.42(1), 64–68 (2008).
  • Pavone P , BianchiniR, ParanoEet al. Anti-brain antibodies in PANDAS versus uncomplicated streptococcal infection. Pediatr. Neurol.30(2), 107–110 (2004).
  • Alvarez JI , CayrolR, PratA. Disruption of central nervous system barriers in multiple sclerosis. Biochim. Biophys. Acta1812(2), 252–264 (2011).
  • Kebir H , KreymborgK, IferganIet al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med.13(10), 1173–1175 (2007).
  • Huppert J , CloshenD, CroxfordAet al. Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J.24(4), 1023–1034 (2010).
  • Teixeira AL Jr , CardosoF, SouzaAL, TeixeiraMM. Increased serum concentrations of monokine induced by interferon-gamma/CXCL9 and interferon-gamma-inducible protein 10/CXCL-10 in Sydenham's chorea patients. J. Neuroimmunol.150(1–2), 157–162 (2004).
  • Martino D , DaleRC, GilbertDL, GiovannoniG, LeckmanJF. Immunopathogenic mechanisms in tourette syndrome: a critical review. Mov. Disord.24(9), 1267–1279 (2009).
  • Swedo SE , LeonardHL, MittlemanBBet al. Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever. Am. J. Psychiatry154(1), 110–112 (1997).
  • Lougee L , PerlmutterSJ, NicolsonR, GarveyMA, SwedoSE. Psychiatric disorders in first-degree relatives of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). J. Am. Acad. Child Adolesc. Psychiatry39(9), 1120–1126 (2000).
  • Dranitzki Z , SteinerI. PANDAS in siblings: a common risk?Eur. J. Neurol.14(6), e4 (2007).
  • Murphy TK , StorchEA, TurnerA, ReidJM, TanJ, LewinAB. Maternal history of autoimmune disease in children presenting with tics and/or obsessive–compulsive disorder. J. Neuroimmunol.229(1–2), 243–247 (2010).
  • Monzani B , RijsdijkF, HarrisJ, Mataix-ColsD. The structure of genetic and environmental risk factors for dimensional representations of DSM-5 obsessive–compulsive spectrum disorders. JAMA Psychiatry71(2), 182–189 (2014).
  • O'rourke JA , ScharfJM, YuD, PaulsDL. The genetics of Tourette syndrome: a review. J. Psychosom. Res.67(6), 533–545 (2009).
  • Luleyap HU , OnatogluD, YilmazMBet al. Association between pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections disease and tumor necrosis factor-alpha gene-308 g/a, -850 c/t polymorphisms in 4–12-year-old children in Adana/Turkey. Indian J. Hum. Genet.19(2), 196–201 (2013).
  • Luleyap H , OnatogluD, TahirogluAet al. Association between obsessive compulsive disorder and tumor necrosis factor-alpha gene -308 (G>A) and -850 (C>T) polymorphisms in Turkish Children. Balkan. J. Med. Genet.15(2), 61–66 (2012).
  • Song Z , SongY, YinJet al. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. PLoS ONE7(9), e46113 (2012).
  • Teuffel O , EthierMC, BeyeneJ, SungL. Association between tumor necrosis factor-alpha promoter -308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: a systematic review and meta-analysis. Crit. Care Med.38(1), 276–282 (2010).
  • Patel JA , NairS, RevaiKet al. Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media. Pediatrics118(6), 2273–2279 (2006).
  • Mccormick DP , GradyJJ, DiegoAet al. Acute otitis media severity: association with cytokine gene polymorphisms and other risk factors. Int. J. Pediatr. Otorhinolaryngol.75(5), 708–712 (2011).
  • Mcgrath LM , YuD, MarshallCet al. Copy number variation in obsessive–compulsive disorder and tourette syndrome: a cross-disorder study. J. Am. Acad. Child Adolesc. Psychiatry53(8), 910–919 (2014).
  • De Leeuw C , GoudriaanA, SmitABet al. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis. Eur. J. Hum. Genet.23(11), 1519–1522 (2015).
  • Li YR , LiJ, ZhaoSDet al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med.21(9), 1018–1027 (2015).
  • Sun YV . Integration of biological networks and pathways with genetic association studies. Hum. Genet.131(10), 1677–1686 (2012).
  • Mooney MA , NiggJT, McweeneySK, WilmotB. Functional and genomic context in pathway analysis of GWAS data. Trends Genet.30(9), 390–400 (2014).
  • Ramanan VK , ShenL, MooreJH, SaykinAJ. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet.28(7), 323–332 (2012).
  • International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium , SawcerSet al.Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature476(7359), 214–219 (2011).
  • Roederer M , QuayeL, ManginoMet al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell161(2), 387–403 (2015).
  • Kirino Y , RemmersEF. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat. Rev. Rheumatol.11(7), 401–414 (2015).
  • Murphy TK , Parker-AthillEC, LewinAB, StorchEA, MutchPJ. Cefdinir for recent-onset pediatric neuropsychiatric disorders: a pilot randomized trial. J. Child Adolesc. Psychopharmacol.25(1), 57–64 (2015).
  • Heye AK , CullingRD, Valdes Hernandez MdelC, ThrippletonMJ, WardlawJM. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin.6, 262–274 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.