390
Views
0
CrossRef citations to date
0
Altmetric
Review

A Place for Precision Medicine in Bladder Cancer: Targeting the Fgfrs

, , &
Pages 2243-2263 | Received 22 Jan 2016, Accepted 08 Jun 2016, Published online: 06 Jul 2016

References

  • Ferlay J , ShinHR, BrayF, FormanD, MathersC, ParkinDM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127(12), 2893–2917 (2010).
  • Babjuk M , BurgerM, ZigeunerRet al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur. Urol.64(4), 639–653 (2013).
  • Sylvester RJ , Van Der MeijdenAP, OosterlinckWet al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol.49(3), 466–477 (2006).
  • Sylvester RJ . Natural history, recurrence, and progression in superficial bladder cancer. Sci. World J.6, 2617–2625 (2006).
  • Yeung C , DinhT, LeeJ. The health economics of bladder cancer: an updated review of the published literature. Pharmacoeconomics32(11), 1093–1104 (2014).
  • Svatek RS , HollenbeckBK, HolmangSet al. The economics of bladder cancer: costs and considerations of caring for this disease. Eur. Urol.66(2), 253–262 (2014).
  • Von Der Maase H , SengelovL, RobertsJTet al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol.23(21), 4602–4608 (2005).
  • Sternberg CN , YagodaA, ScherHIet al. M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for advanced transitional cell carcinoma of the urothelium. J. Urol.139(3), 461–469 (1988).
  • Griffiths G , HallR, SylvesterR, RaghavanD, ParmarMK. International Phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol.29(16), 2171–2177 (2011).
  • Grossman HB , NataleRB, TangenCMet al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med.349(9), 859–866 (2003).
  • Gallagher DJ , MilowskyMI, BajorinDF. Advanced bladder cancer: status of first-line chemotherapy and the search for active agents in the second-line setting. Cancer113(6), 1284–1293 (2008).
  • Knowles MA , HurstCD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer15(1), 25–41 (2015).
  • Carneiro BA , MeeksJJ, KuzelTM, ScarantiM, AbdulkadirSA, GilesFJ. Emerging therapeutic targets in bladder cancer. Cancer Treat. Rev.41(2), 170–178 (2015).
  • Beenken A , MohammadiM. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov.8(3), 235–253 (2009).
  • Avivi A , YayonA, GivolD. A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett.330(3), 249–252 (1993).
  • Ornitz DM , XuJ, ColvinJSet al. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem.271(25), 15292–15297 (1996).
  • Johnson DE , WilliamsLT. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res.60, 1–41 (1993).
  • Chellaiah AT , McewenDG, WernerS, XuJ, OrnitzDM. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem.269(15), 11620–11627 (1994).
  • Trueb B , ZhuangL, TaeschlerS, WiedemannM. Characterization of FGFRL1, a novel fibroblast growth factor (FGF) receptor preferentially expressed in skeletal tissues. J. Biol. Chem.278(36), 33857–33865 (2003).
  • Hart KC , RobertsonSC, DonoghueDJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol. Biol. Cell12(4), 931–942 (2001).
  • Cappellen D , De OliveiraC, RicolDet al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet.23(1), 18–20 (1999).
  • Hernandez S , Lopez-KnowlesE, LloretaJet al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J. Clin. Oncol.24(22), 3664–3671 (2006).
  • Kimura T , SuzukiH, OhashiT, AsanoK, KiyotaH, EtoY. The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas. Cancer92(10), 2555–2561 (2001).
  • Sibley K , Cuthbert-HeavensD, KnowlesMA. Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma. Oncogene20, 686–691 (2001).
  • Sidransky D , FrostP, Von EschenbachA, OyasuR, PreisingerAC, VogelsteinB. Clonal origin bladder cancer. N. Engl. J. Med.326(11), 737–740 (1992).
  • Van Rhijn BW , LurkinI, RadvanyiF, KirkelsWJ, Van Der KwastTH, ZwarthoffEC. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res.61(4), 1265–1268 (2001).
  • Van Rhijn BW , Van TilborgAA, LurkinIet al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet.10(12), 819–824 (2002).
  • Wallerand H , BakkarAA, De MedinaSGDet al. Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens. Carcinogenesis26(1), 177–184 (2005).
  • Bodoor K , GhabkariA, JaradatZet al. FGFR3 mutational status and protein expression in patients with bladder cancer in a Jordanian population. Cancer Epidemiol.34, 724–732 (2010).
  • D’Avis PY , RobertsonSC, MeyerAN, BardwellWM, WebsterMK, DonoghueDJ. Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I. Cell Growth Differ.9(1), 71–78 (1998).
  • Di Martino E , L’hôteCG, KennedyW, TomlinsonDC, KnowlesMA. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene28(48), 4306–4316 (2009).
  • Del Piccolo N , PlaconeJ, HristovaK. Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. Biophys. J.108(2), 272–278 (2015).
  • Huang Z , ChenH, BlaisS, NeubertTA, LiX, MohammadiM. Structural mimicry of a-loop tyrosine phosphorylation by a pathogenic FGF receptor 3 mutation. Structure21(10), 1889–1896 (2013).
  • Billerey C , ChopinD, Aubriot-LortonMHet al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am. J. Pathol.158(6), 1955–1959 (2001).
  • WHO . WHO Classification Tumors of the Urinary System and Male Genital Organs. IARC Press, Lyon, France (2004).
  • Van Rhijn BWG , MontironiR, ZwarthoffEC, JöbsisAC, Van Der KwastTH. Frequent FGFR3 mutations in urothelial papilloma. J. Pathol.198(2), 245–251 (2002).
  • Zieger K , Dyrskj⊘tL, WiufCet al. Role of activating fibroblast growth factor receptor 3 mutations in the development of bladder tumors. Clin. Cancer Res.11(21), 7709–7719 (2005).
  • Van Oers JMM , ZwarthoffEC, RehmanIet al. FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumors. Eur. Urol.55(3), 650–658 (2009).
  • Sfakianos JP , ChaEK, IyerGet al. genomic characterization of upper tract urothelial carcinoma. Eur. Urol.68(6), 970–977 (2015).
  • Hernández S , López-KnowlesE, LloretaJet al. FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin. Cancer Res.11(15), 5444–5450 (2005).
  • Bernard-Pierrot I , BramsA, Dunois-LardéCet al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis27(4), 740–747 (2006).
  • Di Martino E , KellyG, RoulsonJA, KnowlesMA. Alteration of cell-cell and cell-matrix adhesion in urothelial cells: an oncogenic mechanism for mutant FGFR3. Mol. Cancer Res.13(1), 138–148 (2015).
  • Williams SV , HurstCD, KnowlesMA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet.22, 795–803 (2012).
  • Network TCGaR . Comprehensive molecular characterization of urothelial bladder carcinoma. Nature507, 315–322 (2014).
  • Guo G , SunX, ChenCet al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet.45, 1459–1463 (2013).
  • Nakanishi Y , AkiyamaN, TsukaguchiTet al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3–BAIAP2L1. Mol. Cancer Ther.14, 704–712 (2015).
  • Peter BJ , KentHM, MillsIGet al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303(5657), 495–499 (2004).
  • Royle SJ . The role of clathrin in mitotic spindle organisation. J. Cell Sci.125(Pt 1), 19–28 (2012).
  • Singh D , ChanJM, ZoppoliPet al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science337(6099), 1231–1235 (2012).
  • Tomlinson DC , L’HoteCG, KennedyW, PittE, KnowlesMA. Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines. Cancer Res.65(22), 10441–10449 (2005).
  • Zhang X , IbrahimiOA, OlsenSK, UmemoriH, MohammadiM, OrnitzDM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem.281(23), 15694–15700 (2006).
  • Tomlinson D , BaldoO, HarndenP, KnowlesM. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol.213(1), 91–98 (2007).
  • Amaral AF , Mendez-PertuzM, MunozAet al. Plasma 25-hydroxyvitamin D(3) and bladder cancer risk according to tumor stage and FGFR3 status: a mechanism-based epidemiological study. J. Natl Cancer Inst.104(24), 1897–1904 (2012).
  • Neuzillet Y , Van RhijnBW, PrigodaNLet al. FGFR3 mutations, but not FGFR3 expression and FGFR3 copy-number variations, are associated with favourable non-muscle invasive bladder cancer. Virchows Arch.465(2), 207–213 (2014).
  • Mhawech-Fauceglia P , CheneyRT, FischerG, BeckA, HerrmannFR. FGFR3 and p53 protein expressions in patients with pTa and pT1 urothelial bladder cancer. Eur. J. Surg. Oncol.32(2), 231–237 (2006).
  • Gómez-Román JJ , SaenzP, MolinaMet al. Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin. Cancer Res.11(2 Pt 1), 459–465 (2005).
  • Guancial EA , WernerL, BellmuntJet al. FGFR3 expression in primary and metastatic urothelial carcinoma of the bladder. Cancer Med.3(4), 835–844 (2014).
  • Catto JWF , MiahS, OwenHCet al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res.69(21), 8472–8481 (2009).
  • Parker BC , AnnalaMJ, CogdellDEet al. The tumorigenic FGFR3–TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest.123(2), 855–865 (2013).
  • Blick C , RamachandranA, WigfieldSet al. Hypoxia regulates FGFR3 expression via HIF-1alpha and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer. Br. J. Cancer109(1), 50–59 (2013).
  • Sayan AE , D’AngeloB, SayanBSet al. p73 and p63 regulate the expression of fibroblast growth factor receptor 3. Biochem. Biophys. Res. Commun.394(3), 824–828 (2010).
  • Karni-Schmidt O , Castillo-MartinM, ShenTHet al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am. J. Pathol.178(3), 1350–1360 (2011).
  • Sjodahl G , LaussM, LovgrenKet al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res.18(12), 3377–3386 (2012).
  • Choi W , ShahJB, TranMet al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS ONE7(1), e30206 (2012).
  • Van Rhijn BW , Van Der KwastTH, LiuLet al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J. Urol.187(1), 310–314 (2012).
  • Burger M , Van Der AaMN, Van OersJMet al. Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study. Eur. Urol.54(0), 835–844 (2007).
  • Van Rhijn BW , ZuiverloonTC, VisANet al. Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur. Urol.58(3), 433–441 (2010).
  • Rebouissou S , HeraultA, LetouzeEet al. CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J. Pathol.227(3), 315–324 (2012).
  • Eswarakumar VP , LaxI, SchlessingerJ. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev.16(2), 139–149 (2005).
  • Gotoh N . Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci.99(7), 1319–1325 (2008).
  • Tsang M , DawidIB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci. STKE2004(228), pe17 (2004).
  • Mohammadi M , HoneggerAM, RotinDet al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol.11(10), 5068–5078 (1991).
  • Hart KC , RobertsonSC, KanemitsuMY, MeyerAN, TynanJA, DonoghueDJ. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene19(29), 3309–3320 (2000).
  • Kang S , DongS, GuTLet al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell12(3), 201–214 (2007).
  • Jebar AH , HurstCD, TomlinsonDC, JohnstonC, TaylorCF, KnowlesMA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene24(33), 5218–5225 (2005).
  • Wu YM , SuF, Kalyana-SundaramSet al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov.3(6), 636–647 (2013).
  • Du X , WangQR, ChanEet al. FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth. Cancer Res.72(22), 5843–5855 (2012).
  • Juanpere N , AgellL, LorenzoMet al. Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer. Hum. Pathol.43(10), 1573–1582 (2012).
  • Salazar L , KashiwadaT, KrejciPet al. A novel interaction between fibroblast growth factor receptor 3 and the p85 subunit of phosphoinositide 3-kinase: activation-dependent regulation of ERK by p85 in multiple myeloma cells. Hum. Mol. Genet.18(11), 1951–1961 (2009).
  • Salazar L , KashiwadaT, KrejciPet al. Fibroblast growth factor receptor 3 interacts with and activates TGFbeta-activated kinase 1 tyrosine phosphorylation and NFkappaB signaling in multiple myeloma and bladder cancer. PLoS ONE9(1), e86470 (2014).
  • Masoumi-Moghaddam S , AminiA, MorrisDL. The developing story of Sprouty and cancer. Cancer Metastasis Rev.33(2–3), 695–720 (2014).
  • Hall AB , JuraN, DasilvaJ, JangYJ, GongD, Bar-SagiD. hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol.13(4), 308–314 (2003).
  • St-Germain JR , TaylorP, ZhangWet al. Differential regulation of FGFR3 by PTPN1 and PTPN2. Proteomics15(2–3), 419–433 (2015).
  • Agazie YM , MovillaN, IschenkoI, HaymanMJ. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene22(44), 6909–6918 (2003).
  • Thisse B , ThisseC. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol.287(2), 390–402 (2005).
  • Fischbach A , RoglerA, ErberRet al. Fibroblast growth factor receptor (FGFR) gene amplifications are rare events in bladder cancer. Histopathology66(5), 639–649 (2015).
  • Ross JS , WangK, Al-RohilRNet al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod. Pathol.27, 271–280 (2013).
  • Tomlinson DC , LamontFR, ShnyderSD, KnowlesMA. Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer. Cancer Res.69(11), 4613–4620 (2009).
  • Tomlinson DC , KnowlesMA. Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer. Am. J. Pathol.177(5), 2379–2386 (2010).
  • Werner S , DuanDS, De VriesC, PetersKG, JohnsonDE, WilliamsLT. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol. Cell. Biol.12(1), 82–88 (1992).
  • Johnson DE , LuJ, ChenH, WernerS, WilliamsLT. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol. Cell. Biol.11(9), 4627–4634 (1991).
  • Tomlinson DC , BaxterEW, LoadmanPM, HullMA, KnowlesMA. FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCgamma/COX-2-mediated mechanisms. PLoS ONE7(6), e38972 (2012).
  • Cheng T , RothB, ChoiW, BlackPC, DinneyC, McconkeyDJ. Fibroblast growth factor receptors-1 and -3 play distinct roles in the regulation of bladder cancer growth and metastasis: implications for therapeutic targeting. PLoS ONE8(2), e57284 (2013).
  • Katoh M . FGFR2 abnormalities underlie a spectrum of bone, skin, and cancer pathologies. J. Invest. Dermatol.129(8), 1861–1867 (2009).
  • Andreou A , LamyA, LayetVet al. Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). Am. J. Med. Genet.140(20), 2245–2247 (2006).
  • Spiegelberg C , GiedlJ, GaisaNTet al. Frequency of activating mutations in FGFR2 exon 7 in bladder tumors from patients with early-onset and regular-onset disease. Int. J. Clin. Exp. Pathol.7(4), 1708–1713 (2014).
  • Diez De Medina SG , ChopinD, El MarjouAet al. Decreased expression of keratinocyte growth factor receptor in a subset of human transitional cell bladder carcinomas. Oncogene14(3), 323–330 (1997).
  • De Medina SG , PopovZ, ChopinDKet al. Relationship between E-cadherin and fibroblast growth factor receptor 2b expression in bladder carcinomas. Oncogene18(41), 5722–5726 (1999).
  • Ricol D , CappellenD, El MarjouAet al. Tumor suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene18(51), 7234–7243 (1999).
  • Nguyen M , WatanabeH, BudsonAE, RichieJP, FolkmanJ. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Natl Cancer Inst.85(3), 241–242 (1993).
  • Chodak GW , HospelhornV, JudgeSM, MayforthR, KoeppenH, SasseJ. Increased levels of fibroblast growth factor-like activity in urine from patients with bladder or kidney cancer. Cancer Res.48(8), 2083–2088 (1988).
  • O’brien TS , SmithK, CranstonD, FuggleS, BicknellR, HarrisAL. Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br. J. Urol.76(3), 311–314 (1995).
  • Chopin DK , CaruelleJP, ColombelMet al. Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J. Urol.150(4), 1126–1130 (1993).
  • Ravery V , JouanneauJ, Gil DiezSet al. Immunohistochemical detection of acidic fibroblast growth factor in bladder transitional cell carcinoma. Urol. Res.20(3), 211–214 (1992).
  • Palcy S , ChopinDK, CaruelleD, RaveryV, BarritaultD, CaruelleJP. Fibroblast growth factors and their specific binding sites in normal urothelium and transitional cell carcinoma (TCC) of the human bladder. Cell. Mol. Biol.41(4), 565–575 (1995).
  • Zaravinos A , VolanisD, LambrouGI, DelakasD, SpandidosDA. Role of the angiogenic components, VEGFA, FGF2, OPN and RHOC, in urothelial cell carcinoma of the urinary bladder. Oncol. Rep.28(4), 1159–1166 (2012).
  • Bertz S , AbeeC, Schwarz-FurlanSet al. Increased angiogenesis and FGFR protein expression indicate a favourable prognosis in bladder cancer. Virchows Arch.465(6), 687–695 (2014).
  • Lamont FR , TomlinsonDC, CooperPA, ShnyderSD, ChesterJD, KnowlesMA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br. J. Cancer104(1), 75–82 (2011).
  • Martínez-Torrecuadrada J , CifuentesG, López-SerraP, SaenzP, MartínezA, CasalJI. Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin. Cancer Res.11(17), 6280–6290 (2005).
  • Martinez-Torrecuadrada JL , CheungLH, Lopez-SerraPet al. Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol. Cancer Ther.7(4), 862–873 (2008).
  • Qing J , DuX, ChenYet al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest.119(5), 1216–1229 (2009).
  • Hanze J , HenriciM, HegeleA, HofmannR, OlbertPJ. Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells. BMC Cancer13, 589 (2013).
  • Tomlinson DC , HurstCD, KnowlesMA. Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer. Oncogene26(40), 5889–5899 (2007).
  • Miyake M , IshiiM, KoyamaNet al. 1-tert-butyl-3–[6–(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of FGFR3, inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest. J. Pharmacol. Exp. Ther.332(3), (2009).
  • Gozgit JM , WongMJ, MoranLet al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther.11(3), 690–699 (2012).
  • Guagnano V , KauffmannA, WohrleSet al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discovery2(12), 1118–1133 (2012).
  • Zhao G , LiWY, ChenDet al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol. Cancer Ther.10(11), 2200–2210 (2011).
  • Nakanishi Y , AkiyamaN, TsukaguchiTet al. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther.13(11), 2547–2558 (2014).
  • Gust KM , McconkeyDJ, AwreySet al. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol. Cancer Ther.12(7), 1245–1254 (2013).
  • Tanner Y , GroseRP. Dysregulated FGF signalling in neoplastic disorders. Semin. Cell Dev. Biol. Epub Oct 19 (2015).
  • Ho HK , YeoAH, KangTS, ChuaBT. Current strategies for inhibiting FGFR activities in clinical applications: opportunities, challenges and toxicological considerations. Drug Discov. Today19(1), 51–62 (2014).
  • Touat M , IleanaE, Postel-VinayS, AndreF, SoriaJC. Targeting FGFR signaling in cancer. Clin. Cancer Res.21(12), 2684–2694 (2015).
  • Milowsky MI , DittrichC, DuranIet al. Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. Eur. J. Cancer50(18), 3145–3152 (2014).
  • Kumar R , KnickVB, RudolphSKet al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol. Cancer Ther.6(7), 2012–2021 (2007).
  • O’Hare T , ShakespeareWC, ZhuXet al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell16(5), 401–412 (2009).
  • Bello E , ColellaG, ScarlatoVet al. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res.71(4), 1396–1405 (2011).
  • Ratain MJ , SchwartzGK, OzaAMet al. Brivanib (BMS-582664) in advanced solid tumors (AST): results of a Phase II randomized discontinuation trial (RDT). J. Clin. Oncol.29(Suppl.), Abstract 3079 (2011).
  • Hilberg F , RothGJ, KrssakMet al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res.68(12), 4774–4782 (2008).
  • Mross K , StefanicM, GmehlingDet al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin. Cancer Res.16(1), 311–319 (2010).
  • Boss DS , GlenH, BeijnenJHet al. A Phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumors. Br. J. Cancer106(10), 1598–1604 (2012).
  • Yamada K , YamamotoN, YamadaYet al. Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin. Cancer Res.17(8), 2528–2537 (2011).
  • Sequist LV , CassierP, VargaAet al. Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors. Cancer Res.74(19 Suppl.), Abstract CT326 (2014).
  • Gavine PR , MooneyL, KilgourEet al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res.72(8), 2045–2056 (2012).
  • Rodriguez-Vida A , SaggeseM, HughesSet al. Complexity of FGFR signalling in metastatic urothelial cancer. J. Hematol. Oncol.8(1), 119 (2015).
  • Tabernero J , BahledaR, DienstmannRet al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol.33(30), 3401–3408 (2015).
  • Perera T , JovchevaE, VialardJet al. JNJ-42756493 is an inhibitor of FGFR-1, 2, 3 and 4 with nanomolar affinity for targeted therapy. Cancer Res.74(Suppl. 19), Abstract 1738 (2014).
  • Sootome H , FujitaH, OchiwaHet al. Identification & Biological Characterization of a Highly Potent, Irreversible Inhibitor of FGFR, TAS-2985. Eur. J. Cancer48(Suppl. 6), (2012).
  • O’Donnell P , GoldmanJW, GordonMSet al. A Phase I dose-escalation study of MFGR1877S, a human monoclonal anti-fibroblast growth factor receptor 3 (FGFR3) antibody, in patients with advanced solid tumors. Eur. J. Cancer48(Suppl. 6), 191–192 (2012).
  • Bellovin DI , PalenciaS, HestirKet al. FP-1039/GSK3052230, an FGF ligand trap, enhances VEGF antagonist therapy in preclinical models of RCC and HCC. Cancer Res.74(Suppl. 19), Abstract 5449 (2011).
  • Necchi A , MarianiL, ZaffaroniNet al. Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, Phase 2 trial. Lancet Oncol.13(8), 810–816 (2012).
  • Palma N , MorrisJC, AliSM, RossJS, PalSK. Exceptional response to pazopanib in a patient with urothelial carcinoma harboring FGFR3 activating mutation and amplification. Eur. Urol.68(1), 168–170 (2015).
  • Kilgour E , FerryD, SaggeseMet al. Exploratory biomarker analysis of a Phase I study of AZD4547, an inhibitor of fibroblast growth factor receptor (FGFR), in patients with advanced solid tumors. J. Clin. Oncol.32(5 Suppl.), Abstract 11010 (2014).
  • Ochiiwa H , FujitaH, ItohKet al. TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities. Mol. Cancer Ther.12(11 Suppl.), Abstract A270 (2013).
  • Harding TC , LongL, PalenciaSet al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci. Transl. Med.5(178), 178ra139 (2013).
  • Shah DR , ShahRR, MorganrothJ. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf.36(6), 413–426 (2013).
  • Laederich MB , DegninCR, LunstrumGP, HoldenP, HortonWA. Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: implications for therapeutic manipulation. J. Biol. Chem.286(22), 19597–19604 (2011).
  • Acquaviva J , HeS, ZhangCet al. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Mol. Cancer Res.12(7), 1042–1054 (2014).
  • Ma L , SatoF, SatoRet al. Dual targeting of heat shock proteins 90 and 70 promotes cell death and enhances the anticancer effect of chemotherapeutic agents in bladder cancer. Oncol. Rep.31(6), 2482–2492 (2014).
  • Murakami M , ElfenbeinA, SimonsM. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc. Res.78(2), 223–231 (2008).
  • Van Oers JM , LurkinI, Van ExselAJet al. A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin. Cancer Res.11(21), 7743–7748 (2005).
  • Thomas RK , BakerAC, DebiasiRMet al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet.39(3), 347–351 (2007).
  • Wagle N , BergerMF, DavisMJet al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov.2(1), 82–93 (2012).
  • Turo R , HarndenP, ThygesenHet al. FGFR3 expression in primary invasive bladder cancers and matched lymph node metastases. J. Urol.193(1), 325–330 (2015).
  • Jager W , XueH, HayashiTet al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget6(25), 21522–21532 (2015).
  • Holohan C , Van SchaeybroeckS, LongleyDB, JohnstonPG. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer13(10), 714–726 (2013).
  • Wilson TR , FridlyandJ, YanYet al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature487(7408), 505–509 (2012).
  • Harbinski F , CraigVJ, SanghaviSet al. Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discov.2(10), 948–959 (2012).
  • Herrera-Abreu MT , PearsonA, CampbellJet al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discovery3(9), 1058–1071 (2013).
  • Chell V , BalmannoK, LittleASet al. Tumor cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene32(25), 3059–3070 (2013).
  • Bunney TD , WanS, ThiyagarajanNet al. The effect of mutations on drug sensitivity and kinase activity of fibroblast growth factor receptors: a combined experimental and theoretical study. EBioMedicine2(3), 194–204 (2015).
  • Wang J , MikseO, LiaoRGet al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene34(17), 2167–2177 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.