55
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Low-Fidelity Alternative Dna Repair Carcinogenesis Theory May Interpret Many Cancer Features and Anticancer Strategies

, , &
Pages 1897-1910 | Received 08 Feb 2016, Accepted 22 Apr 2016, Published online: 11 May 2016

References

  • Wu J , StarrS. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol.10(7), 1239–1253 (2014).
  • Dietlein F , ReinhardtHC. Molecular pathways: exploiting tumor-specific molecular defects in DNA repair pathways for precision cancer therapy. Clin. Cancer Res.20(23), 5882–5887 (2014).
  • Umar A , KunkelTA. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur. J. Biochem.238(2), 297–307 (1996).
  • Bentley J , DiggleCP, HarndenP, KnowlesMA, KiltieAE. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining. Nucleic Acids Res.32(17), 5249–5259 (2004).
  • Shin KH , KangMK, KimRH, KametaA, BaludaMA, ParkNH. Abnormal DNA end-joining activity in human head and neck cancer. Int. J. Mol. Med.17(5), 917–924 (2006).
  • Miquel C , JacobS, GrandjouanSet al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene26(40), 5919–5926 (2007).
  • Anisimov VN . Carcinogenesis and aging 20 years after: escaping horizon. Mech. Ageing Dev.130(1–2), 105–121 (2009).
  • Goedecke W , EijpeM, OffenbergHH, van AalderenM, HeytingC. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat. Genet.23(2), 194–198 (1999).
  • Essers J , van SteegH, de WitJet al. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J.19(7), 1703–1710 (2000).
  • Preston CR , FloresCC, EngelsWR. Differential usage of alternative pathways of double-strand break repair in Drosophila. Genetics172(2), 1055–1068 (2006).
  • Haber JE . Partners and pathwaysrepairing a double-strand break. Trends Genet.16(6), 259–264 (2000).
  • Orii KE , LeeY, KondoN, McKinnonPJ. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl Acad. Sci. USA103(26), 10017–10022 (2006).
  • Marcon E , MoensPB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. Bioessays27(8), 795–808 (2005).
  • Engels WR , Johnson-SchlitzD, FloresC, WhiteL, PrestonCR. A third link connecting aging with double strand break repair. Cell. Cycle6(2), 131–135 (2007).
  • Liang SB , OhtsukiY, FurihataMet al. Sun-exposure- and aging-dependent p53 protein accumulation results in growth advantage for tumour cells in carcinogenesis of nonmelanocytic skin cancer. Virchows Arch.434(3), 193–199 (1999).
  • Vijg J . Somatic mutations and aging: a re-evaluation. Mutat. Res.447(1), 117–135 (2000).
  • McGregor H , LandCE, ChoiKet al. Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1969. J. Natl Cancer Inst.59(3), 799–811 (1977).
  • Jones RA , MooreheadRA. The impact of transgenic IGF-IR overexpression on mammary development and tumorigenesis. J. Mammary Gland Biol. Neoplasia13(4), 407–413 (2008).
  • Chao EC , LipkinSM. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. Nucleic Acids Res.34(3), 840–852 (2006).
  • Nouspikel T . DNA repair in differentiated cells: some new answers to old questions. Neuroscience145(4), 1213–1221 (2007).
  • Nouspikel T , HanawaltPC. DNA repair in terminally differentiated cells. DNA Repair (Amst.)1(1), 59–75 (2002).
  • Uehara Y , IkehataH, FuruyaMet al. XPC is involved in genome maintenance through multiple pathways in different tissues. Mutat. Res.670(1–2), 24–31 (2009).
  • Friedenson B . Inflammatory processes inordinately increase tissue specific cancer risks in carriers of mutations in BRCA1, BRCA2, ATM or Fanconi anemia genes. J. Med. Med. Sci.1(8), 356–371 (2010).
  • Friedenson B . A theory that explains the tissue specificity of BRCA1/2 related and other hereditary cancers. J. Med. Med. Sci.1(8), 372–384 (2010).
  • Gorski JJ , KennedyRD, HoseyAM, HarkinDP. The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clin. Cancer Res.15(5), 1514–1518 (2009).
  • Baldeyron C , JacqueminE, SmithJet al. A single mutated BRCA1 allele leads to impaired fidelity of double strand break end-joining. Oncogene21(9), 1401–1410 (2002).
  • Snouwaert JN , GowenLC, LatourAMet al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a BRCA1 transgene. Oncogene18(55), 7900–7907 (1999).
  • Weberpals JI , Clark-KnowlesKV, VanderhydenBC. Sporadic epithelial ovarian cancer: clinical relevance of BRCA1 inhibition in the DNA damage and repair pathway. J. Clin. Oncol.26(19), 3259–3267 (2008).
  • Martin RW , OrelliBJ, YamazoeM, MinnAJ, TakedaS, BishopDK. RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res.67(20), 9658–9665 (2007).
  • Kotake K , KoyamaY, NasuJ, FukutomiT, YamaguchiN. Relation of family history of cancer and environmental factors to the risk of colorectal cancer: a case-control study. Jpn. J. Clin. Oncol.25(5), 195–202 (1995).
  • Potter JD . Nutrition and colorectal cancer. Cancer Causes Control7(1), 127–146 (1996).
  • Thompson D , EastonD, Breast Cancer Linkage Consortium. Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol. Biomarkers Prev.11(4), 329–336 (2002).
  • Mark WY , LiaoJC, LuYet al. Characterization of segments from the central region of BRCA1: an intrinsically disordered scaffold for multiple protein-protein and protein-DNA interactions? J. Mol. Biol. 345(2), 275–287 (2005).
  • Guo Z , ChavezV, SinghPet al. Comprehensive mapping of the C-terminus of flap endonuclease-1 reveals distinct interaction sites for five proteins that represent different DNA replication and repair pathways. J. Mol. Biol.377(3), 679–690 (2008).
  • Anthoney DA , McIlwrathAJ, GallagherWM, EdlinAR, BrownR. Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res.56(6), 1374–1381 (1996).
  • Fedier A , FinkD. Mutations in DNA mismatch repair genes: implications for DNA damage signaling and drug sensitivity (review). Int. J. Oncol.24(4), 1039–1047 (2004).
  • Stojic L , BrunR, JiricnyJ. Mismatch repair and DNA damage signalling. DNA Repair (Amst.)3(8–9), 1091–1101 (2004).
  • Karran P , HampsonR. Genomic instability and tolerance to alkylating agents. Cancer Surv.28, 69–85 (1996).
  • Brown R , HirstGL, GallagherWMet al. hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene15(1), 45–52 (1997).
  • Durant ST , MorrisMM, IllandMet al. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr. Biol.9(1), 51–54 (1999).
  • Cummings M , HigginbottomK, McGurkCJet al. XPA versus ERCC1 as chemosensitising agents to cisplatin and mitomycin C in prostate cancer cells: role of ERCC1 in homologous recombination repair. Biochem. Pharmacol.72(2), 166–175 (2006).
  • Xu ZY , LoignonM, HanFY, PanasciL, AloyzR. Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis. J. Pharmacol. Exp. Ther.314(2), 495–505 (2005).
  • Aloyz R , XuZY, BelloVet al. Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res.62(19), 5457–5462 (2002).
  • Pani E , StojicL, El-ShemerlyM, JiricnyJ, FerrariS. Mismatch repair status and the response of human cells to cisplatin. Cell. Cycle6(14), 1796–1802 (2007).
  • Laconi E , DoratiottoS, VineisP. The microenvironments of multistage carcinogenesis. Semin. Cancer Biol.18(5), 322–329 (2008).
  • Hold GL , El-OmarEM. Genetic aspects of inflammation and cancer. Biochem. J.410(2), 225–235 (2008).
  • Moizhess TG . Carcinogenesis induced by foreign bodies. Biochemistry (Mosc.)73(7), 763–775 (2008).
  • Setlow RB . Repair deficient human disorders and cancer. Nature271(5647), 713–717 (1978).
  • Deniz M , HolzmannK, WiesmullerL. Functional analysis-make or break for cancer predictability. Mutat. Res. 743–744, 132–141 (2013).
  • Spry M , ScottT, PierceH, D’OrazioJA. DNA repair pathways and hereditary cancer susceptibility syndromes. Front. Biosci.12, 4191–4207 (2007).
  • Friedl P , AlexanderS. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell147(5), 992–1009 (2011).
  • Roussos ET , CondeelisJS, PatsialouA. Chemotaxis in cancer. Nat. Rev. Cancer11(8), 573–587 (2011).
  • Reymond N , d’AguaBB, RidleyAJ. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer13(12), 858–870 (2013).
  • Ben-Baruch A . Site-specific metastasis formation: chemokines as regulators of tumor cell adhesion, motility and invasion. Cell. Adh. Migr.3(4), 328–333 (2009).
  • Klein-Goldberg A , MamanS, WitzIP. The role played by the microenvironment in site-specific metastasis. Cancer Lett.352(1), 54–58 (2014).
  • Opdenakker G , Van DammeJ. The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int. J. Dev. Biol.48(5–6), 519–527 (2004).
  • Wells A . Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res.78, 31–101 (2000).
  • Samani AA , YakarS, LeRoithD, BrodtP. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev.28(1), 20–47 (2007).
  • Grivennikov SI , GretenFR, KarinM. Immunity, inflammation, and cancer. Cell140(6), 883–899 (2010).
  • Quail DF , JoyceJA. Microenvironmental regulation of tumor progression and metastasis. Nat. Med.19(11), 1423–1437 (2013).
  • Borsig L , WolfMJ, RoblekM, LorentzenA, HeikenwalderM. Inflammatory chemokines and metastasis – tracing the accessory. Oncogene33(25), 3217–3224 (2014).
  • Nishikawa M . Reactive oxygen species in tumor metastasis. Cancer Lett.266(1), 53–59 (2008).
  • Pani G , GaleottiT, ChiarugiP. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev.29(2), 351–378 (2010).
  • Martinez-Marignac VL , RodrigueA, DavidsonDet al. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS ONE6(1), e16394 (2011).
  • Broustas CG , LiebermanHB. DNA damage response genes and the development of cancer metastasis. Radiat. Res.181(2), 111–130 (2014).
  • Mathews LA , CabarcasSM, FarrarWL. DNA repair: the culprit for tumor-initiating cell survival?Cancer Metastasis Rev.30(2), 185–197 (2011).
  • Sarasin A , KauffmannA. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat. Res.659(1–2), 49–55 (2008).
  • Winnepenninckx V , LazarV, MichielsSet al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl Cancer Inst.98(7), 472–482 (2006).
  • Bentley J , L’HoteC, PlattFet al. Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities. Genes Chromosomes Cancer48(4), 310–321 (2009).
  • Staff AC . An introduction to cell migration and invasion. Scand. J. Clin. Lab. Invest.61(4), 257–268 (2001).
  • Comoglio PM , TrusolinoL. Invasive growth: from development to metastasis. J. Clin. Invest.109(7), 857–862 (2002).
  • Gentile A , ComoglioPM. Invasive growth: a genetic program. Int. J. Dev. Biol.48(5–6), 451–456 (2004).
  • Kohn EC , LiottaLA. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res.55(9), 1856–1862 (1995).
  • Podsypanina K , DuYC, JechlingerM, BeverlyLJ, HambardzumyanD, VarmusH. Seeding and propagation of untransformed mouse mammary cells in the lung. Science321(5897), 1841–1844 (2008).
  • Kang Y , PantelK. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell23(5), 573–581 (2013).
  • Coghlin C , MurrayGI. Current and emerging concepts in tumour metastasis. J. Pathol.222(1), 1–15 (2010).
  • Crisan M , YapS, CasteillaLet al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell. Stem Cell.3(3), 301–313 (2008).
  • Assmus B , IwasakiM, SchachingerVet al. Acute myocardial infarction activates progenitor cells and increases Wnt signalling in the bone marrow. Eur. Heart J.33(15), 1911–1919 (2012).
  • McAllister SS , WeinbergRA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol.16(8), 717–727 (2014).
  • Gao D , LiS. Stimuli-induced organ-specific injury enhancement of organotropic metastasis in a spatiotemporal regulation. Pathol. Oncol. Res.20(1), 27–42 (2014).
  • Klein CA . Framework models of tumor dormancy from patient-derived observations. Curr. Opin. Genet. Dev.21(1), 42–49 (2011).
  • Yeang CH , McCormickF, LevineA. Combinatorial patterns of somatic gene mutations in cancer. FASEB J.22(8), 2605–2622 (2008).
  • Giancotti FG . Mechanisms governing metastatic dormancy and reactivation. Cell155(4), 750–764 (2013).
  • Stoecklein NH , KleinCA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int. J. Cancer126(3), 589–598 (2010).
  • Wan L , PantelK, KangY. Tumor metastasis: moving new biological insights into the clinic. Nat. Med.19(11), 1450–1464 (2013).
  • Klein CA . Selection and adaptation during metastatic cancer progression. Nature501(7467), 365–372 (2013).
  • Balkwill F . Cancer and the chemokine network. Nat. Rev. Cancer4(7), 540–550 (2004).
  • Dranoff G . Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer4(1), 11–22 (2004).
  • Sporn MB , RobertsAB. Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest.78(2), 329–332 (1986).
  • Thun MJ , HenleySJ, GanslerT. Inflammation and cancer: an epidemiological perspective. Novartis Found. Symp.256, 6–21 (2004).
  • Carpi A , NicoliniA, AntonelliA, FerrariP, RossiG. Cytokines in the management of high risk or advanced breast cancer: an update and expectation. Curr. Cancer Drug Targets9(8), 888–903 (2009).
  • Witz IP . Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res.68(1), 9–13 (2008).
  • Fang B . Development of synthetic lethality anticancer therapeutics. J. Med. Chem.57(19), 7859–7873 (2014).
  • Fece de la Cruz F , GappBV, NijmanSM. Synthetic lethal vulnerabilities of cancer. Annu. Rev. Pharmacol. Toxicol.55, 513–531 (2015).
  • Lord CJ , TuttAN, AshworthA. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med.66, 455–470 (2015).
  • McLornan DP , ListA, MuftiGJ. Applying synthetic lethality for the selective targeting of cancer. N. Engl. J. Med.371(18), 1725–1735 (2014).
  • Paul JM , TempletonSD, BaharaniA, FreywaldA, VizeacoumarFJ. Building high-resolution synthetic lethal networks: a ‘Google map’ of the cancer cell. Trends Mol. Med.20(12), 704–715 (2014).
  • Canaani D . Application of the concept synthetic lethality toward anticancer therapy: a promise fulfilled?Cancer Lett.352(1), 59–65 (2014).
  • Rabik CA , DolanME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev.33(1), 9–23 (2007).
  • Slupianek A , SchmutteC, TomblineGet al. BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol. Cell8(4), 795–806 (2001).
  • Slupianek A , GurdekE, KoptyraMet al. BLM helicase is activated in BCR/ABL leukemia cells to modulate responses to cisplatin. Oncogene24(24), 3914–3922 (2005).
  • Conilleau S , TakizawaY, TachiwanaH, FleuryF, KurumizakaH, TakahashiM. Location of tyrosine 315, a target for phosphorylation by cAbl tyrosine kinase, at the edge of the subunit-subunit interface of the human Rad51 filament. J. Mol. Biol.339(4), 797–804 (2004).
  • Kitao H , YuanZM. Regulation of ionizing radiation-induced Rad52 nuclear foci formation by c-Abl-mediated phosphorylation. J. Biol. Chem.277(50), 48944–48948 (2002).
  • Chen G , YuanSS, LiuWet al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J. Biol. Chem.274(18), 12748–12752 (1999).
  • Yuan ZM , HuangY, IshikoTet al. Regulation of Rad51 function by c-Abl in response to DNA damage. J. Biol. Chem.273(7), 3799–3802 (1998).
  • Bruce IA , SlevinNJ, HomerJJ, McGownAT, WardTH. Synergistic effects of imatinib (STI 571) in combination with chemotherapeutic drugs in head and neck cancer. Anticancer Drugs16(7), 719–726 (2005).
  • Zhang P , GaoWY, TurnerS, DucatmanBS. Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol. Cancer2, 1 (2003).
  • Godbout JP , PesaventoJ, HartmanME, MansonSR, FreundGG. Methylglyoxal enhances cisplatin-induced cytotoxicity by activating protein kinase Cdelta. J. Biol. Chem.277(4), 2554–2561 (2002).
  • Wozniak K , CzechowskaA, BlasiakJ. Cisplatin-evoked DNA fragmentation in normal and cancer cells and its modulation by free radical scavengers and the tyrosine kinase inhibitor STI571. Chem. Biol. Interact.147(3), 309–318 (2004).
  • Yang LY , LiL, JiangH, ShenY, PlunkettW. Expression of ERCC1 antisense RNA abrogates gemicitabine-mediated cytotoxic synergism with cisplatin in human colon tumor cells defective in mismatch repair but proficient in nucleotide excision repair. Clin. Cancer Res.6(3), 773–781 (2000).
  • Boudsocq F , BenaimP, CanitrotYet al. Modulation of cellular response to cisplatin by a novel inhibitor of DNA polymerase beta. Mol. Pharmacol.67(5), 1485–1492 (2005).
  • Pepper C , LoweH, FeganCet al. Fludarabine-mediated suppression of the excision repair enzyme ERCC1 contributes to the cytotoxic synergy with the DNA minor groove crosslinking agent SJG-136 (NSC 694501) in chronic lymphocytic leukaemia cells. Br. J. Cancer97(2), 253–259 (2007).
  • Li L , LiuX, GlassmanABet al. Fludarabine triphosphate inhibits nucleotide excision repair of cisplatin-induced DNA adducts in vitro. Cancer Res.57(8), 1487–1494 (1997).
  • van Waardenburg RC , de JongLA, van DelftFet al. Homologous recombination is a highly conserved determinant of the synergistic cytotoxicity between cisplatin and DNA topoisomerase I poisons. Mol. Cancer. Ther.3(4), 393–402 (2004).
  • Chen RS , JhanJY, SuYJet al. Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation. Exp. Cell Res.315(15), 2658–2672 (2009).
  • Iwasa T , OkamotoI, SuzukiMet al. Inhibition of insulin-like growth factor 1 receptor by CP-751,871 radiosensitizes non-small cell lung cancer cells. Clin. Cancer Res.15(16), 5117–5125 (2009).
  • Jeon JH , KimSK, KimHJ, ChangJ, AhnCM, ChangYS. Insulin-like growth factor-1 attenuates cisplatin-induced gammaH2AX formation and DNA double-strand breaks repair pathway in non-small cell lung cancer. Cancer Lett.272(2), 232–241 (2008).
  • Das AK , ChenBP, StoryMDet al. Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res.67(11), 5267–5274 (2007).
  • Lynch TJ , BellDW, SordellaRet al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350(21), 2129–2139 (2004).
  • Abdel-Rahman WM , KatsuraK, RensWet al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA98(5), 2538–2543 (2001).
  • Grady WM . Genomic instability and colon cancer. Cancer Metastasis Rev.23(1–2), 11–27 (2004).
  • Jo WS , CarethersJM. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark.2(1–2), 51–60 (2006).
  • Gervaz P , BucherP, MorelP. Two colons-two cancers: paradigm shift and clinical implications. J. Surg. Oncol.88(4), 261–266 (2004).
  • Risinger MA , GrodenJ. Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell6(6), 539–545 (2004).
  • Abdel-Rahman WM , LohiH, KnuutilaS, PeltomakiP. Restoring mismatch repair does not stop the formation of reciprocal translocations in the colon cancer cell line HCA7 but further destabilizes chromosome number. Oncogene24(4), 706–713 (2005).
  • Stavnezer J , SchraderCE. Mismatch repair converts AID-instigated nicks to double-strand breaks for antibody class-switch recombination. Trends Genet.22(1), 23–28 (2006).
  • Schrader CE , GuikemaJE, LinehanEK, SelsingE, StavnezerJ. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J. Immunol.179(9), 6064–6071 (2007).
  • Eccleston J , YanC, YuanK, AltFW, SelsingE. Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining. J. Immunol.186(4), 2336–2343 (2011).
  • Pan Q , Petit-FrereC, LahdesmakiA, GregorekH, ChrzanowskaKH, HammarstromL. Alternative end joining during switch recombination in patients with ataxia-telangiectasia. Eur. J. Immunol.32(5), 1300–1308 (2002).
  • Gaspari AA , FleisherTA, KraemerKH. Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J. Clin. Invest.92(3), 1135–1142 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.