82
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Biological Imaging for Individualized Therapy in Radiation Oncology: Part II Medical and Clinical Aspects

, , , , , , , , , , , , , , , & show all
Pages 751-769 | Received 13 Sep 2017, Accepted 11 Jan 2018, Published online: 09 Mar 2018

References

  • Weber WA , GrosuAL, CzerninJ. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat. Clin. Pract. Oncol.5(3), 160–170 (2008).
  • Zhang J , ZhuangD-X, YaoC-Jet al. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection. J. Neurosurgery124(6), 1585–1593 (2016).
  • Ken S , VieillevigneL, FranceriesXet al. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiat. Oncol.8(1), 1 (2013).
  • Grosu AL , MollsM, ZimmermannFBet al. High-precision radiation therapy with integrated biological imaging and tumor monitoring. Strahlentherapie Onkologie182(7), 361–368 (2006).
  • Grosu A-L , PiertM, WeberWAet al. Positron emission tomography for radiation treatment planning. Strahlentherapie Onkologie181(8), 483–499 (2005).
  • Grosu A-L , WeberWA. PET for radiation treatment planning of brain tumors. Radiother. Oncol.96(3), 325–327 (2010).
  • la Fougere C , SuchorskaB, BartensteinP, KrethFW, TonnJC. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncol.13(8), 806–819 (2011).
  • Weber WA , WesterHJr, HerzMet al. O -(2-[ 18 F]fluoroethyl)- l -tyrosine and l -[methyl- 11 C]methionine uptake in brain tumors: initial results of a comparative study. Eur. J. Nuclear Med. Mol. Imaging27(5), 542–549 (2000).
  • Grosu A-L , AstnerST, RiedelEet al. An interindividual comparison of O-(2- [18F]fluoroethyl)-L-tyrosine (FET)– and L-[methyl-11C]methionine (MET)–PET in patients with brain gliomas and metastases. Int. J. Radiat. Oncol.81(4), 1049–1058 (2011).
  • Dunet V , RossierC, BuckA, StuppR, PriorJO. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J. Nuclear Med.53(2), 207–214 (2012).
  • Grosu AL , WeberWA, RiedelEet al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.63(1), 64–74 (2005).
  • Grosu AL , WeberWA, FranzMet al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol.63(2), 511–519 (2005).
  • Oehlke O , MixM, GrafEet al. Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme (GLIAA) – protocol of a randomized Phase II trial (NOA 10/ARO 2013–1). BMC Cancer16(1), 769 (2016).
  • Grosu A-L , LachnerR, WiedenmannNet al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int. J. Radiat. Oncol.56(5), 1450–1463 (2003).
  • Grosu A-L , WeberWA, AstnerSTet al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol.66(2), 339–344 (2006).
  • Astner ST , Dobrei-CiuchendeaM, EsslerMet al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int. J. Radiat. Oncol.72(4), 1161–1167 (2008).
  • Milker-Zabel S , HenzeM, ZabelAet al. Improved target volume definition in patients with intracranial meningiomas by correlation of CT, MRI and [68Ga]-DOTATOC PET for fractionated stereotactic radiotherapy. Int. J. Radiation Oncol.63, S108–S109 (2005).
  • Dirix P , VandecaveyeV, De KeyzerF, StroobantsS, HermansR, NuytsS. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with 18F-FDG PET, 18F-fluoromisonidazole pet, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J. Nuclear Med.50(7), 1020–1027 (2009).
  • Fleming IN , ManavakiR, BlowerPJet al. Imaging tumor hypoxia with positron emission tomography. Br. J. Cancer112(2), 238–250 (2014).
  • Nordsmark M , BentzenSM, RudatVet al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol.77(1), 18–24 (2005).
  • Gagel B , ReinartzP, DiMartinoEet al. pO2 polarography versus positron emission tomography ([18F] fluoromisonidazole, [18F]-2-fluoro-2′-deoxyglucose). Strahlentherapie Onkologie180(10), 616–622 (2004).
  • Ang KK , HarrisJ, WheelerRet al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med.363(1), 24–35 (2010).
  • Bogowicz M , RiestererO, IkenbergKet al. Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int. J. Radiat. Oncol.99(4), 921–928 (2017).
  • Lee N , SchoderH, BeattieBet al. Strategy of using intratreatment hypoxia imaging to selectively and safely guide radiation dose de-escalation concurrent with chemotherapy for locoregionally advanced human papillomavirus-related oropharyngeal carcinoma. Int. J. Radiat. Oncol.96(1), 9–17 (2016).
  • Payne KFB , HaqJ, BrownJ, ConnorS. The role of diffusion-weighted magnetic resonance imaging in the diagnosis, lymph node staging and assessment of treatment response of head and neck cancer. Int. J. Oral Maxillofac. Surg.44(1), 1–7 (2015).
  • Vandecaveye V , DirixP, De KeyzerFet al. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur. Radiol.20(7), 1703–1714 (2010).
  • Thoeny HC , De KeyzerF, KingAD. Diffusion-weighted MR imaging in the head and neck. Radiology263(1), 19–32 (2012).
  • Mehanna H , WongW-L, McConkeyCCet al. PET-CT surveillance versus neck dissection in advanced head and neck cancer. N. Engl. J. Med.374(15), 1444–1454 (2016).
  • Wiedenmann NE , BucherS, HentschelMet al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother. Oncol.117(1), 113–117 (2015).
  • Zips D , ZöphelK, AbolmaaliNet al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother. Oncol.105(1), 21–28 (2012).
  • Bittner M-I , WiedenmannN, BucherSet al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother. Oncol.108(3), 511–516 (2013).
  • Grosu A-L , SouvatzoglouM, RöperBet al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int. J. Radiat. Oncol.69(2), 541–551 (2007).
  • Thorwarth D , SoukupM, AlberM. Dose painting with IMPT, helical tomotherapy and IMXT: a dosimetric comparison. Radiother. Oncol.86(1), 30–34 (2008).
  • Flynn RT , BowenSR, BentzenSM, Rockwell MackieT, JerajR. Intensity-modulated x-ray (IMXT) versus proton (IMPT) therapy for theragnostic hypoxia-based dose painting. Phys. Med. Biol.53(15), 4153–4167 (2008).
  • Malinen E , SovikA, HristovD, BrulandOS, OlsenDR. Adapting radiotherapy to hypoxic tumors. Phys. Med. Biol.51(19), 4903–4921 (2006).
  • Sovik A , MalinenE, SkogmoHK, BentzenSM, BrulandOS, OlsenDR. Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int. J. Radiat. Oncol.68(5), 1496–1504 (2007).
  • Thorwarth D , EschmannSM, PaulsenF, AlberM. A kinetic model for dynamic [18F]-FMISO PET data to analyse tumor hypoxia. Phys. Med. Biol.50(10), 2209–2224 (2005).
  • MacManus MP , HicksRJ, MatthewsJPet al. High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int. J. Radiat. Oncol.50(2), 287–293 (2001).
  • Gould MK , KuschnerWG, RydzakCEet al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer. Ann. Intern. Med.139(11), 879 (2003).
  • Cerfolio RJ , OjhaB, BryantAS, RaghuveerV, MountzJM, BartolucciAA. The accuracy of integrated PET-CT compared with dedicated pet alone for the staging of patients with nonsmall cell lung cancer. Ann. Thorac. Surg.78(3), 1017–1023 (2004).
  • Lardinois D , WederW, HanyTFet al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N. Engl. J. Med.348(25), 2500–2507 (2003).
  • Shim SS , LeeKS, KimBTet al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology236(3), 1011–1019 (2005).
  • Cuaron J , DunphyM, RimnerA. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer. Front. Oncol.2, 208 (2012).
  • Belderbos JSA , HeemsbergenWD, De JaegerK, BaasP, LebesqueJV. Final results of a Phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int. J. Radiat. Oncol.66(1), 126–134 (2006).
  • National Institute for Health and Care Excellence NICE clinical guideline: lung cancer: the diagnosis and treatment of lung cancer. April 2011. www.nice.org.uk/guidance/CG121/chapter/introduction.
  • Nestle U , WalterK, SchmidtSet al. 18F-Deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int. J. Radiat. Oncol.44(3), 593–597 (1999).
  • De Ruysscher D , WandersS, van HarenEet al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int. J. Radiat. Oncol.62(4), 988–994 (2005).
  • Caldwell CB , MahK, UngYCet al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18 FDG-hybrid PET fusion. Int. J. Radiat. Oncol.51(4), 923–931 (2001).
  • Fox JL , RenganR, O’MearaWet al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int. J. Radiat. Oncol. 62(1), 70–75 (2005).
  • Greco C , RosenzweigK, CasciniGL, TamburriniO. Current status of PET/CT for tumor volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer57(2), 125–134 (2007).
  • Hanna GG , McAleeseJ, CarsonKJet al. 18F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int. J. Radiat. Oncol.77(1), 24–30 (2010).
  • Bayne M , HicksRJ, EverittSet al. Reproducibility of ‘intelligent’ contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int. J. Radiat. Oncol.77(4), 1151–1157 (2010).
  • Nestle U , KrempS, Schaefer-SchulerAet al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med.46(8), 1342–1348 (2005).
  • Werner-Wasik M , NelsonAD, ChoiWet al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int. J. Radiat. Oncol.82(3), 1164–1171 (2012).
  • Zaidi H , El NaqaI. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur. J. Nucl. Med. Mol. Imaging37(11), 2165–2187 (2010).
  • MacManus MP , HicksRJ. Where do we draw the line? Contouring tumors on positron emission tomography/computed tomography. Int. J. Radiat. Oncol.71(1), 2–4 (2008).
  • MacManus M , NestleU, RosenzweigKEet al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother. Oncol.91(1), 85–94 (2009).
  • Doll C , Duncker-RohrV, RückerGet al. Influence of experience and qualification on PET-based target volume delineation. Strahlentherapie Onkologie190(6), 555–562 (2014).
  • Konert T , VogelW, MacManusMPet al. PET/CT imaging for target volume delineation in curative intent radiotherapy of non-small cell lung cancer: IAEA consensus report 2014. Radiother. Oncol.116(1), 27–34 (2015).
  • Guckenberger M , AndratschkeN, DieckmannKet al. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother. Oncol.124(1), 11–17 (2017).
  • Verstegen NE , LagerwaardFJ, HaasbeekCJA, SlotmanBJ, SenanS. Outcomes of stereotactic ablative radiotherapy following a clinical diagnosis of stage I NSCLC: comparison with a contemporaneous cohort with pathologically proven disease. Radiother. Oncol.101(2), 250–254 (2011).
  • De Ruysscher D , Faivre-FinnC, NestleUet al. European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J. Clin. Oncol.28(36), 5301–5310 (2010).
  • Callahan J , KronT, SivaSet al. Geographic miss of lung tumors due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat. Oncol. doi:10.1186/s13014-014-0291-6 (2014) ( Epub ahead of print).
  • Chirindel A , AdebahrS, SchusterDet al. Impact of 4D-18FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother. Oncol.115(3), 335–341 (2015).
  • Sindoni A , MinutoliF, PontorieroA, IatìG, BaldariS, PergolizziS. Usefulness of four dimensional (4D) PET/CT imaging in the evaluation of thoracic lesions and in radiotherapy planning: review of the literature. Lung Cancer96, 78–86 (2016).
  • Werner MK , ParkerJA, KolodnyGM, EnglishJR, PalmerMR. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT. AJR Am. J. Roentgenol.193(6), 1640–1645 (2009).
  • Wolthaus JW , van HerkM, MullerSHet al. Fusion of respiration-correlated PET and CT scans: correlated lung tumor motion in anatomical and functional scans. Phys. Med. Biol.50(7), 1569–1583 (2005).
  • Guerra L , MeregalliS, ZorzAet al. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur. J. Nucl. Med. Mol. Imaging41(4), 702–710 (2014).
  • Chirindel A , AdebahrS, SchusterDet al. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study. Radiother. Oncol.115(3), 335–341 (2015).
  • Stereotactic Fractionated Radiotherapy (SR) in Patients with Medically Inoperable Small Lung Tumors: a Phase II Study (STRIPE I). DRKS00003658.). www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00003658.
  • De Ruysscher D , WandersS, MinkenAet al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother. Oncol.77(1), 5–10 (2005).
  • Fleckenstein J , HellwigD, KrempSet al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int. J. Radiat. Oncol.81(4), e283–e289 (2011).
  • Schimek-Jasch T , KüstersA, HoffmannsH, NestleU. Optimierung der Strahlentherapieplanung bei lokal fortgeschrittenen NSCLC durch 18F-FDG PET-CT: stand der PET-plan-studie. Der Nuklearmediziner37(3), 175–180 (2014).
  • Nestle U , RischkeHC, EschmannSMet al. Improved inter-observer agreement of an expert review panel in an oncology treatment trial – insights from a structured interventional process. Eur. J. Cancer51(17), 2525–2533 (2015).
  • van Elmpt W , De RuysscherD, van der SalmAet al. The PET-boost randomised Phase II dose-escalation trial in non-small cell lung cancer. Radiother. Oncol.104(1), 67–71 (2012).
  • Adebahr S , ColletteS, ShashEet al. LungTech, an EORTC Phase II trial of stereotactic body radiotherapy for centrally located lung tumors: a clinical perspective. Br. J. Radiol.88(1051), 20150036 (2015).
  • Lambin P , Rios-VelazquezE, LeijenaarRet al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer48(4), 441–446 (2012).
  • Aerts HJ , VelazquezER, LeijenaarRTet al. Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.5, 4006 (2014).
  • Heidenreich A , BellmuntJ, BollaMet al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol.59(1), 61–71 (2011).
  • Barentsz JO , RichenbergJ, ClementsRet al. ESUR prostate MR guidelines 2012. Eur. Radiol.22(4), 746–757 (2012).
  • Haffner MC , MosbrugerT, EsopiDMet al. Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest.123(11), 4918–4922 (2013).
  • Pucar D , HricakH, Shukla-DaveAet al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int. J. Radiat. Oncol.69(1), 62–69 (2007).
  • Lips IM , van der HeideUA, HaustermansKet al. Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials12, 255 (2011).
  • Bauman G , HaiderM, Van der HeideUA, MénardC. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother. Oncol.107(3), 274–281 (2013).
  • Jadvar H . Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med.52(1), 81–89 (2010).
  • Chang JH , JoonDL, LeeSTet al. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy. Radiother. Oncol.99(2), 187–192 (2011).
  • Farsad M , SchiavinaR, CastellucciPet al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J. Nucl. Med.46(10), 1642–1649 (2005).
  • Kwee SA , CoelMN. Detection of synchronous primary breast and prostate cancer by F-18 fluorocholine PET/CT. Clin. Nucl. Med.35(2), 128–129 (2010).
  • Chang JH , Lim JoonD, LeeSTet al. Intensity modulated radiation therapy dose painting for localized prostate cancer using 11C-choline positron emission tomography scans. Int. J. Radiat. Oncol.83(5), e691–e696 (2012).
  • Bundschuh RA , WendlCM, WeirichGet al. Tumor volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur. J. Nucl. Med. Mol. Imaging40(6), 824–831 (2013).
  • Grosu A-L , WeirichG, WendlCet al. 11C-choline PET/pathology image coregistration in primary localized prostate cancer. Eur. J. Nucl. Med. Mol. Imaging41(12), 2242–2248 (2014).
  • Eder M , NeelsO, MüllerMet al. Novel preclinical and radiopharmaceutical aspects of [68Ga]Ga-PSMA-HBED-CC: a new PET tracer for imaging of prostate cancer. Pharmaceuticals7(7), 779–796 (2014).
  • Mhawech-Fauceglia P , ZhangS, TerraccianoLet al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumor tissue microarray technique. Histopathology50(4), 472–483 (2007).
  • Silver DA , PellicerI, FairWR, HestonWD, Cordon-CardoC. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res.3(1), 81–85 (1997).
  • Pyka T , OkamotoS, DahlbenderMet al. Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging43(12), 2114–2121 (2016).
  • Maurer T , GschwendJE, RauscherIet al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol.195(5), 1436–1443 (2016).
  • van Leeuwen PJ , EmmettL, HoBet al. Prospective evaluation of 68Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int.119(2), 209–215 (2016).
  • Eiber M , WeirichG, HolzapfelKet al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur. Urol.70(5), 829–836 (2016).
  • Rhee H , ThomasP, ShepherdBet al. Prostate specific membrane antigen positron emission tomography may improve the diagnostic accuracy of multiparametric magnetic resonance imaging in localized prostate cancer. J. Urol.196(4), 1261–1267 (2016).
  • Zamboglou C , DrendelV, JilgCAet al. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumor volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology. Theranostics7(1), 228–237 (2017).
  • Zamboglou C , SchillerF, FechterTet al. 68Ga-HBED-CC-PSMA PET/CT versus histopathology in primary localized prostate cancer: a voxel-wise comparison. Theranostics6(10), 1619–1628 (2016).
  • Zamboglou C , SachpazidisI, KoubarKet al. Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using 68Ga-HBED-CC PSMA-PET/CT: a planning study based on histopathology reference. Radiother. Oncol.123(3), 472–477 (2017).
  • Gomez-Iturriaga A , CasqueroF, UrresolaAet al. Dose escalation to dominant intraprostatic lesions with MRI-transrectal ultrasound fusion high-dose-rate prostate brachytherapy. Prospective Phase II trial. Radiother. Oncol.119(1), 91–96 (2016).
  • Pinkawa M , AttiehC, PirothMDet al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer – evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother. Oncol.93(2), 213–219 (2009).
  • Afshar-Oromieh A , Holland-LetzT, GieselFLet al. Diagnostic performance of (68)Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging44(8), 1258–1268 (2017).
  • Verburg FA , PfisterD, HeidenreichAet al. Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur. J. Nucl. Med. Mol. Imaging43(3), 397–403 (2016).
  • Habl G , SauterK, SchillerKet al. (68) Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: individualized medicine or new standard in salvage treatment. Prostate77(8), 920–927 (2017).
  • Shakespeare TP . Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists. Radiat. Oncol.10, 233 (2015).
  • Colombo N , CarinelliS, ColomboA, MariniC, RolloD, SessaC. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol.23(Suppl. 7), vii27–vii32 (2012).
  • Colombo N , PretiE, LandoniFet al. Endometrial cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol.22(Suppl. 6), vi35–vi39 (2011).
  • WJ K . National comprehensive cancer network clinical practice guidelines® in oncology (NCCN guidelines®) uterine neoplasms version 2.2016 (2016). www.NCCN.org.
  • Schwarz JK , BeriwalS, EsthappanJet al. Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy14(5), 587–599 (2015).
  • Pecorelli S . Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynecol. Obstet.105(2), 103–104 (2009).
  • Target Volume Definition in Radiation Oncology . GrosuA-L, NiederC ( Eds). Springer-Verlag Berlin, Heidelberg, Germany (2015).
  • Antonsen SL , JensenLN, LoftAet al. MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer – a multicenter prospective comparative study. Gynecol. Oncol.128(2), 300–308 (2013).
  • Husby JA , ReitanBC, BiermannMet al. Metabolic tumor volume on 18F-FDG PET/CT improves preoperative identification of high-risk endometrial carcinoma patients. J. Nucl. Med.56(8), 1191–1198 (2015).
  • Crivellaro C , SignorelliM, GuerraLet al. Tailoring systematic lymphadenectomy in high-risk clinical early stage endometrial cancer: the role of 18F-FDG PET/CT. Gynecol. Oncol.130(2), 306–311 (2013).
  • Signorelli M , CrivellaroC, BudaAet al. Staging of high-risk endometrial cancer with PET/CT and sentinel lymph node mapping. Clin. Nucl. Med.40(10), 780–785 (2015).
  • Lin WC , HungYC, YehLS, KaoCH, YenRF, ShenYY. Usefulness of 18F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol. Oncol.89(1), 73–76 (2003).
  • Loft A , BerthelsenAK, RoedHet al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol. Oncol.106(1), 29–34 (2007).
  • Reinhardt MJ , Ehritt-BraunC, VogelgesangDet al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology218(3), 776–782 (2001).
  • Rose PG , AdlerLP, RodriguezM, FaulhaberPF, Abdul-KarimFW, MiraldiF. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J. Clin. Oncol.17(1), 41 (1999).
  • Selman TJ , MannC, ZamoraJ, AppleyardTL, KhanK. Diagnostic accuracy of tests for lymph node status in primary cervical cancer: a systematic review and meta-analysis. Can. Med. Assoc. J.178(7), 855–862 (2008).
  • Sironi S , BudaA, PicchioMet al. Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology238(1), 272–279 (2006).
  • Yeh L-S , HungY-C, ShenY-Y, KaoC-H, LinC-C, LeeC-C. Detecting para-aortic lymph nodal metastasis by positron emission tomography of 18F-fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol. Rep.9(6), 1289–1292 (2002).
  • Sugawara Y , EisbruchA, KosudaS, ReckerBE, KisonPV, WahlRL. Evaluation of FDG PET in patients with cervical cancer. J. Nucl. Med.40(7), 1125–1131 (1999).
  • Havrilesky LJ , KulasingamSL, MatcharDB, MyersER. FDG-PET for management of cervical and ovarian cancer. Gynecol. Oncol.97(1), 183–191 (2005).
  • van Vliet EPM , Heijenbrok-KalMH, HuninkMGM, KuipersEJ, SiersemaPD. Staging investigations for oesophageal cancer: a meta-analysis. Br. J. Cancer98(3), 547–557 (2008).
  • van Westreenen HL , WesterterpM, BossuytPMMet al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J. Clin. Oncol.22(18), 3805–3812 (2004).
  • Stahl M , MarietteC, HaustermansK, CervantesA, ArnoldD. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol.24(Suppl. 6), vi51–vi56 (2013).
  • Mamede M , FakhriGE, Abreu-e-LimaP, GandlerW, NoséV, GerbaudoVH. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann. Nucl. Med.21(10), 553–562 (2007).
  • Yu W , FuX-L, ZhangY-Jet al. GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother. Oncol.93(3), 441–446 (2009).
  • Zhong X , YuJ, ZhangBet al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int. J. Radiat. Oncol.73(1), 136–141 (2009).
  • Gondi V , BradleyK, MehtaMet al. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int. J. Radiat. Oncol.67(1), 187–195 (2007).
  • Konski A , DossM, MilestoneBet al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int. J. Radiat. Oncol.61(4), 1123–1128 (2005).
  • Muijs CT , BeukemaJC, PruimJet al. A systematic review on the role of FDG-PET/CT in tumor delineation and radiotherapy planning in patients with esophageal cancer. Radiother. Oncol.97(2), 165–171 (2010).
  • Muijs CT , BeukemaJC, WidderJet al. 18F-FLT-PET for detection of rectal cancer. Radiother. Oncol.98(3), 357–359 (2011).
  • Schreurs LMA , BuszDM, PaardekooperGMRMet al. Original article: impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability. Dis. Esophagus23(6), 493–501 (2010).
  • Wilson JM , PartridgeM, HawkinsM. The application of functional imaging techniques to personalise chemoradiotherapy in upper gastrointestinal malignancies. Clin. Oncol.26(9), 581–596 (2014).
  • Moureau-Zabotto L , TouboulE, LerougeDet al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int. J. Radiat. Oncol.63(2), 340–345 (2005).
  • Muijs CT , SchreursLM, BuszDMet al. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer. Radiother. Oncol.93(3), 447–453 (2009).
  • Muijs CT , BeukemaJC, PruimJet al. A systematic review on the role of FDG-PET/CT in tumor delineation and radiotherapy planning in patients with esophageal cancer. Radiother. Oncol.97(2), 165–171 (2010).
  • Muijs CT , BeukemaJC, WoutersenDet al. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer. Radiother. Oncol.113(2), 188–192 (2014).
  • Han D , YuJ, YuYet al. Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. Int. J. Radiat. Oncol.76(4), 1235–1241 (2010).
  • Chang DT , SchellenbergD, ShenJet al. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer115(3), 665–672 (2009).
  • Schellenberg D , GoodmanKA, LeeFet al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int. J. Radiat. Oncol.72(3), 678–686 (2008).
  • Schellenberg D , QuonA, MinnAYet al. 18Fluorodeoxyglucose PET Is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int. J. Radiat. Oncol.77(5), 1420–1425 (2010).
  • Wilson JM , MukherjeeS, ChuK-Y, BrunnerTB, PartridgeM, HawkinsM. Challenges in using 18 F-fluorodeoxyglucose-PET-CT to define a biological radiotherapy boost volume in locally advanced pancreatic cancer. Radiat. Oncol.9(1), 146 (2014).
  • Ford EC , HermanJ, YorkeE, WahlRL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J. Nucl. Med.50(10), 1655–1665 (2009).
  • Gwynne S , MukherjeeS, WebsterRet al. Imaging for target volume delineation in rectal cancer radiotherapy – a systematic review. Clin. Oncol.24(1), 52–63 (2012).
  • O’Neill BD , SalernoG, ThomasK, TaitDM, BrownG. MR vs CT imaging: low rectal cancer tumor delineation for three-dimensional conformal radiotherapy. Br. J. Radiol.82(978), 509–513 (2009).
  • Hu F , TangW, SunYet al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget8(43), 75597–75606 (2017).
  • Anderson C , KoshyM, StaleyCet al. PET-CT fusion in radiation management of patients with anorectal tumors. Int. J. Radiat. Oncol.69(1), 155–162 (2007).
  • Bassi MC , TurriL, SacchettiGet al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int. J. Radiat. Oncol.70(5), 1423–1426 (2008).
  • Gwynne S , MukherjeeS, WebsterRet al. Imaging for target volume delineation in rectal cancer radiotherapy – a systematic review. Clin. Oncol.24(1), 52–63 (2012).
  • Ciernik IF , HuserM, BurgerC, DavisJB, SzekelyG. Automated functional image-guided radiation treatment planning for rectal cancer. Int. J. Radiat. Oncol.62(3), 893–900 (2005).
  • Buijsen J , van den BogaardJ, JanssenMHMet al. FDG-PET provides the best correlation with the tumor specimen compared with MRI and CT in rectal cancer. Radiother. Oncol.98(2), 270–276 (2011).
  • Roels S , SlagmolenP, NuytsJet al. Biological image-guided radiotherapy in rectal cancer: challenges and pitfalls. Int. J. Radiat. Oncol.75(3), 782–790 (2009).
  • Patel DA , ChangST, GoodmanKAet al. Impact of integrated PET/CT on variability of target volume delineation in rectal cancer. Technol. Cancer Res. Treat.6(1), 31–36 (2007).
  • Roels S , SlagmolenP, NuytsJet al. Biological image-guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol. 47(7), 1237–1248 (2008).
  • Cotter SE , GrigsbyPW, SiegelBAet al. FDG-PET/CT in the evaluation of anal carcinoma. Int. J. Radiat. Oncol.65(3), 720–725 (2006).
  • Nguyen BT , JoonDL, KhooVet al. Assessing the impact of FDG-PET in the management of anal cancer. Radiother. Oncol.87(3), 376–382 (2008).
  • Mai SK , WelzelG, HermannB, WenzF, HaberkornU, DinterDJ. Can the radiation dose to CT-enlarged but FDG-PET-negative inguinal lymph nodes in anal cancer be reduced?Strahlentherapie Onkologie185(4), 254–259 (2009).
  • Lambrecht M , HaustermansK. Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother. Oncol.96(3), 339–346 (2010).
  • Corvera CU , BlumgartLH, AkhurstTet al. 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J. Am. Coll. Surg.206(1), 57–65 (2008).
  • Kim Y-J , YunM, LeeWJ, KimKS, LeeJD. Usefulness of 18 F-FDG PET in intrahepatic cholangiocarcinoma. Eur. J. Nucl. Med. Mol. Imaging30(11), 1467–1472 (2003).
  • Stoyanova R , TakharM, TschudiYet al. Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res.5(4), 432–447 (2016).
  • Narang S , LehrerM, YangD, LeeJ, RaoA. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl. Cancer Res.5(4), 383–397 (2016).
  • Gillies RJ , KinahanPE, HricakH. Radiomics: images are more than pictures, they are data. Radiology278(2), 563–577 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.