144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Differential Network Analysis Depicts Regulatory Mechanisms for Hepatocellular Carcinoma from Diverse Backgrounds

ORCID Icon, , , , , , , , , , & show all
Pages 3917-3934 | Received 13 May 2019, Accepted 30 Sep 2019, Published online: 15 Nov 2019

References

  • Siegel RL , MillerKD, JemalA. Cancer Statistics, 2017. CA Cancer J. Clin.67(1), 7–30 (2017).
  • Bruix J , ReigM, ShermanM. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology150(4), 835–853 (2016).
  • Llovet JM , Zucman-RossiJ, PikarskyEet al. Hepatocellular carcinoma. Nat. Rev. Dis. Primers2, 16018 (2016).
  • Sapisochin G , BarryA, DohertyMet al. Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis. J. Hepatol.67(1), 92–99 (2017).
  • Lencioni R , LlovetJM, HanGet al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J. Hepatol.64(5), 1090–1098 (2016).
  • Finn RS , ZhuAX, FarahWet al. Therapies for advanced stage hepatocellular carcinoma with macrovascular invasion or metastatic disease: a systematic review and meta-analysis. Hepatology67(1), 422–435 (2018).
  • Li Z , ZhangJ, LiuXet al. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun.9(1), 1572 (2018).
  • Ponziani FR , BhooriS, CastelliCet al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology69(1), 107–120 (2019).
  • Gingold JA , ZhuD, LeeDF, KasebA, ChenJ. Genomic profiling and metabolic homeostasis in primary liver cancers. Trends Mol. Med.24(4), 395–411 (2018).
  • Krogan NJ , LippmanS, AgardDA, AshworthA, IdekerT. The cancer cell map initiative: defining the hallmark networks of cancer. Mol. Cell58(4), 690–698 (2015).
  • Castro MA , de SantiagoI, CampbellTMet al. Regulators of genetic risk of breast cancer identified by integrative network analysis. Nat. Genet.48(1), 12–21 (2016).
  • Civelek M , LusisAJ. Systems genetics approaches to understand complex traits. Nat. Rev. Genet.15(1), 34–48 (2014).
  • Yu H , TuK, WangYJet al. Combinatorial network of transcriptional regulation and microRNA regulation in human cancer. BMC Syst. Biol.6(1), 61 (2012).
  • Madhamshettiwar PB , MaetschkeSR, DavisMJ, ReverterA, RaganMA. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med.4(5), 41 (2012).
  • De Craene B , BerxG. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer13(2), 97–110 (2013).
  • Yosef N , ShalekAK, GaublommeJTet al. Dynamic regulatory network controlling TH17 cell differentiation. Nature496(7446), 461–468 (2013).
  • Santiago JA , PotashkinJA. Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl Acad. Sci. USA112(7), 2257–2262 (2015).
  • Liu BH , YuH, TuK, LiC, LiYX, LiYY. DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics26(20), 2637–2638 (2010).
  • Yang J , YuH, LiuBHet al. DCGL v2.0: an R package for unveiling differential regulation from differential co-expression. PLoS ONE8(11), e79729 (2013).
  • Cao MS , LiuBY, DaiWT, ZhouWX, LiYX, LiYY. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis. Am. J. Cancer Res.5(9), 2605–2625 (2015).
  • Li Q , LiJ, DaiW, LiYX, LiYY. Differential regulation analysis reveals dysfunctional regulatory mechanism involving transcription factors and microRNAs in gastric carcinogenesis. Artif. Intell. Med.77, 12–22 (2017).
  • Aksoz M , TuranRD, AlbayrakE, KocabasF. Emerging roles of Meis1 in cardiac regeneration, stem cells and cancer. Curr. Drug Targets19(2), 181–190 (2018).
  • Li Z , YaoQ, ZhaoS, WangY, LiY, WangZ. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma. Onco. Targets Ther.10, 3095–3105 (2017).
  • Wilks C , ClineMS, WeilerEet al. The cancer genomics hub (CGHub): overcoming cancer through the power of torrential data. Database (Oxford)2014 (2014). doi: 10.1093/database/bau093
  • Maglott D , OstellJ, PruittKD, TatusovaT. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res.39, D52–D57 (2011).
  • Kozomara A , Griffiths-JonesS. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res.42, D68–D73 (2014).
  • Liberzon A , SubramanianA, PinchbackR, ThorvaldsdottirH, TamayoP, MesirovJP. Molecular signatures database (MSigDB) 3.0. Bioinformatics27(12), 1739–1740 (2011).
  • Liberzon A , BirgerC, ThorvaldsdottirH, GhandiM, MesirovJP, TamayoP. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst.1(6), 417–425 (2015).
  • Lachmann A , XuH, KrishnanJ, BergerSI, MazloomAR, Ma’ayanA. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics26(19), 2438–2444 (2010).
  • Han H , ShimH, ShinDet al. TRRUST: a reference database of human transcriptional regulatory interactions. Sci. Rep.5(1), 11432 (2015).
  • Xu H , YuH, TuKet al. cGRNB: a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. BMC Syst. Biol.7(Suppl. 2), S7 (2013).
  • Povey S , LoveringR, BrufordE, WrightM, LushM, WainH. The HUGO Gene Nomenclature Committee (HGNC). Hum. Genet.109(6), 678–680 (2001).
  • Abugessaisa I , ShimojiH, SahinSet al. FANTOM5 transcriptome catalog of cellular states based on semantic MediaWiki. Database (Oxford)2016 (2016). doi: 10.1093/database/baw105
  • Chou CH , ChangNW, ShresthaSet al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res.44, D239–D247 (2016).
  • Yang JH , LiJH, JiangS, ZhouH, QuLH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res.41, D177–D187 (2013).
  • Wang J , LuM, QiuC, CuiQ. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res.38, D119–D122 (2010).
  • Tu K , YuH, HuaYJet al. Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res.37(18), 5969–5980 (2009).
  • Forbes SA , BeareD, GunasekaranPet al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res.43, D805–D811 (2015).
  • Wang D , GuJ, WangT, DingZ. OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs. Bioinformatics30(15), 2237–2238 (2014).
  • Schmiedel JM , KlemmSL, ZhengYet al. Gene expression. MicroRNA control of protein expression noise. Science348(6230), 128–132 (2015).
  • Yuan Y , LiuB, XiePet al. Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl Acad. Sci. USA112(10), 3158–3163 (2015).
  • Seshachalam VP , SekarK, HuiKM. Insights into the etiology-associated gene regulatory networks in hepatocellular carcinoma from The Cancer Genome Atlas. J. Gastroenterol. Hepatol.33(12), 2037–2047 (2018).
  • Kent LN , BaeS, TsaiSYet al. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J. Clin. Invest.127(3), 830–842 (2017).
  • Morzyglod L , CauzacM, PopineauLet al. Growth factor receptor binding protein 14 inhibition triggers insulin-induced mouse hepatocyte proliferation and is associated with hepatocellular carcinoma. Hepatology65(4), 1352–1368 (2017).
  • Chen CL , UthayaKumar DB, PunjVet al. NANOG Metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab.23(1), 206–219 (2016).
  • Chan C , ThurnherrT, WangJet al. Global re-wiring of p53 transcription regulation by the hepatitis B virus X protein. Mol. Oncol.10(8), 1183–1195 (2016).
  • Hassan M , SelimovicD, GhozlanH, Abdel-kaderO. Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology49(5), 1469–1482 (2009).
  • Zhang Y , XuN, XuJet al. E2F1 is a novel fibrogenic gene that regulates cholestatic liver fibrosis through the Egr-1/SHP/EID1 network. Hepatology60(3), 919–930 (2014).
  • Han ZB , ZhongL, TengMJet al. Identification of recurrence-related microRNAs in hepatocellular carcinoma following liver transplantation. Mol. Oncol.6(4), 445–457 (2012).
  • Zhang Y , GuoX, LiZet al. A systematic investigation based on microRNA-mediated gene regulatory network reveals that dysregulation of microRNA-19a/Cyclin D1 axis confers an oncogenic potential and a worse prognosis in human hepatocellular carcinoma. RNA Biol.12(6), 643–657 (2015).
  • Baik SH , LeeJ, LeeYS, JangJY, KimCW. ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells. Exp. Mol. Med.48(3), e222 (2016).
  • Perz JF , ArmstrongGL, FarringtonLA, HutinYJ, BellBP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol.45(4), 529–538 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.