699
Views
0
CrossRef citations to date
0
Altmetric
Drug Evaluation

Alpelisib in the Treatment of Metastatic HR+ Breast Cancer with PIK3CA Mutations

&
Pages 13-36 | Received 09 May 2020, Accepted 12 Aug 2020, Published online: 23 Sep 2020

References

  • Bray F , FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Mariotto AB , EtzioniR, HurlbertM, PenberthyL, MayerM. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol. Biomarkers Prev.26(6), 809–815 (2017).
  • Cardoso F , CostaA, SenkusE, AaproM, AndreF, BarriosCH3rd. ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 3). Ann. Oncol.28, 16–33 (2017).
  • Wesolowski R , RamaswamyB. Gene expression profiling: changing face of breast cancer classification and management. Gene Expr.15, 105–115 (2011).
  • Lobbezoo DJA , van KampenRJW, VoogdAC, DercksenMW, vanden Berkmortel F, SmildeTJ. Prognosis of metastatic breast cancer subtypes: the hormone receptor/HER2-positive subtype is associated with the most favorable outcome. Breast Cancer Res. Treat.141, 507–514 (2013).
  • Schiff R ,FuquaSA. Clinical aspects of estrogen and progesterone receptors. In: Diseases of the Breast, 4th Edition . HarrisJR, LippmanME, OsborneCK, MorrowM(Eds). Wolters Kluwer/ Lippincott Williams & Wilkins, PA, USA, 408–430 (2009).
  • Caswell-Jin JL , PlevritisSK, TianL, CadhamCJ, XuC, StoutNK. Change in survival in metastatic breast cancer with treatment advances: meta-analysis and systematic review. JNCI Cancer Spectr.2(4), pky062 (2018).
  • Cole MP , JonesCTA, ToddIDH. A new anti-oestrogenic agent in late breast cancer: an early clinical appraisal of ICI46474. Br. J. Cancer25(2), 270–275 (1971).
  • Buzdar AU , JonatW, HowellA, JonesSE, BlomqvistCP, VogelCL. Anastrozole versus megestrol acetate in the treatment of postmenopausal women with advanced breast carcinoma: results of a survival update based on a combined analysis of data from two mature Phase III trials. Arimidex Study Group. Cancer83(6), 1142–1152 (1998).
  • Dombernowsky P , SmithI, FalksonG, LeonardR, PanasciL, BellmuntJ. Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J. Clin. Oncol.16(2), 453–461 (1998).
  • Kaufmann M , BajettaE, DirixLY, FeinLE, JonesSE, ZilemboN. Exemestane is superior to megestrol acetate after tamoxifen failure in postmenopausal women with advanced breast cancer: results of a Phase III randomized double-blind trial. The Exemestane Study Group. J. Clin. Oncol.18(7), 1399–1411 (2000).
  • Di Leo A , JerusalemG, PetruzelkaL, TorresR, BondarenkoIN, KhasanovR. Results of the CONFIRM Phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J. Clin. Oncol.28(30), 4594–4600 (2010).
  • Robertson JFR , BondarenkoIM, TrishkinaE, DvorkinM, PanasciL, ManikhasA. Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, Phase III trial. Lancet388(10063), 2997–3005 (2016).
  • Mouridsen H , GershanovichM, SunY, Pérez-CarriónR, BoniC, MonnierA. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a Phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol.19(10), 2596–2606 (2001).
  • Bonneterre J , BuzdarA, NabholtzJM, RobertsonJF, ThürlimannB, von EulerM. Anastrozole is superior to tamoxifen as first-line therapy in hormone receptor positive advanced breast carcinoma. Cancer92(9), 2247–2258 (2001).
  • Paridaens RJ , DirixLY, BeexLV, NooijM, CameronDA, CuferT. Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J. Clin. Oncol.26(30), 4883–4890 (2008).
  • Baselga J , CamponeM, PiccartM, BurrisHA, RugoHS, SahmoudT. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med.366, 520–529 (2012).
  • Bachelot T , BourgierC, CropetC, Ray-CoquardI, FerreroJM, FreyerG. Randomized Phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J. Clin. Oncol.30(22), 2718–2724 (2012).
  • Kornblum N , ZhaoF, ManolaJ, KleinP, RamaswamyB, BrufskyA. Randomized Phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J. Clin. Oncol.36(16), 1556–1563 (2018).
  • Wolff AC , LazarAA, BondarenkoI, GarinAM, BrincatS, ChowL. Randomized Phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J. Clin. Oncol.31(2), 195–202 (2013).
  • Schmid P , ZaissM, Harper-WynneC, FerreiraM, DubeyS, ChanS. Fulvestrant plus vistusertib vs fulvestrant plus everolimus vs fulvestrant alone for women with hormone receptor–positive metastatic breast cancer. The MANTA Phase II randomized clinical trial. JAMA Oncol.5(11), 1556–1563 (2019).
  • Slamon DJ , NevenP, ChiaS, FaschingPA, DeLaurentiis M, ImS. Overall survival (OS) results of the Phase III MONALEESA-3 trial of postmenopausal patients with hormone receptor positive (HR +), human epidermal growth factor 2-negative (HER2-) advanced breast cancer (ABC) treated with fulvestrant (FUL) ± ribociclib (RIB). Ann. Oncol.30(Suppl. 5), v851–v934 (2019).
  • Im S-A , LuY-S, BardiaA, HarbeckN, ColleoniM, FrankeF. Overall survival with ribociclib plus endocrine therapy in breast cancer. N. Engl. J. Med.381, 307–316 (2019).
  • Sledge GW Jr , ToiM, NevenP, SohnJ, InoueK, PivotX. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor–positive, ERBB2-negative breast cancer that progressed on endocrine therapy – MONARCH 2, a randomized clinical trial. AMA Oncol.6(1), 116–124 (2020).
  • Johnston S , MartinM, DiLeo A, ImSA, AwadaA, ForresterT. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer5, 5 (2019).
  • Finn RS , MartinM, RugoHS, JonesS, ImS-A, GelmonK. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med.375, 1925–1936 (2016).
  • Turner NC , SlamonDJ, RoJ, BondarenkoI, ImS-A, MasudaN. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N. Engl. J. Med.379, 1926–1936 (2018).
  • Hortobagyi GN , StemmerSM, BurrisHA, YapY-S, SonkeGS, Paluch-ShimonS. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med.375, 1738–1748 (2016).
  • O’Leary B , CuttsRJ, LiuY, HrebienS, HuangX, FenwickK. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov.8(11), 1390–1403 (2018).
  • Osborne CK , SchiffR. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med.62, 233–247 (2011).
  • Klinge CM . Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res.29(14), 2905–2919 (2001).
  • Kushner PJ , AgardDA, GreeneGL, ScanlanTS, ShiauAK, UhtRM. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol.74(5), 311–317 (2000).
  • Toy W , ShenY, WonH, GreenB, SakrRA, WillM. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet.45(12), 1439–1445 (2013).
  • Robinson DR , WuYM, VatsP, SuF, LonigroRJ, CaoX. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet.45(12), 1446–1451 (2013).
  • Schiavon G , HrebienS, Garcia-MurillasI, CuttsRJ, PearsonA, TarazonaN. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med.7(313), 313ra182 (2015).
  • Fribbens C , O’LearyB, KilburnL, HrebienS, Garcia-MurillasI, BeaneyM. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J. Clin. Oncol.34(25), 2961–2968 (2016).
  • Jeselsohn R , YelenskyR, BuchwalterG, FramptonG, Meric-BernstamF, Gonzalez-AnguloAM. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer. Clin. Cancer Res.20(7), 1757–1767 (2014).
  • Jeselsohn R , BuchwalterG, DeAngelis C, BrownM, SchiffR. ESR1 mutations as a mechanism for acquired endocrine resistance in breast cancer. Nat. Rev. Clin. Oncol.12(10), 573–583 (2015).
  • Herrera-Abreu MT , PalafoxM, AsgharU, RivasMA, CuttsRJ, Garcia-MurillasI. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res.76(8), 2301–2313 (2016).
  • Caldon CE , MusgroveEA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div.5, 2 (2010).
  • Turner NC , LiuY, ZhuZ, LoiS, ColleoniM, LoiblS. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor–positive metastatic breast cancer. J. Clin. Oncol.37, 1169–1178 (2019).
  • Finn RS , CrownJP, LangI, BoerK, BondarenkoIM, KulykSO. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised Phase II study. Lancet16(1), 25–35 (2015).
  • Schiff R , MassarwehSA, ShouJ, BharwaniL, MohsinSK, OsborneCK. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin. Cancer Res.10(1), 331–336 (2004).
  • Lee AV , CuiX, OesterreichS. Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin. Cancer Res.7, 4429–4435 (2001).
  • Nicholson RI , HutchesonIR, HiscoxSE, KnowldenJM, GilesM, BarrowD. Growth factor signalling and resistance to selective oestrogen receptor modulators and pure anti-oestrogens: the use of anti-growth factor therapies to treat or delay endocrine resistance in breast cancer. Endocr. Relat. Cancer12(Suppl. 1), 29–36 (2005).
  • Vasan N , ToskaE, ScaltritiM. Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann. Oncol.30(Suppl. 10), x3–x11 (2019).
  • Zardavas D , PhillipsWA, LoiS. PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res.16, 201 (2014).
  • Vivanco I , SawyersCL. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat. Rev. Cancer2, 489–501 (2002).
  • Katso R , OkkenhaugK, AhmadiK, WhiteS, TimmsJ, WaterfieldMD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol.17, 615–675 (2001).
  • Engelman JA , LuoJ, CantleyLC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet.7(8), 606–619 (2006).
  • Chagpar RB , LinksPH, PastorMC, FurberLA, HawryshAD, ChamberlainMD. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA107(12), 5471–5476 (2010).
  • Corvera S , CzechMP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol.8(11), 442–446 (1998).
  • Van der Haar E , LeeSI, BandhakaviS, GriffinTJ, KimDH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol.9(3), 316–323 (2007).
  • Cantley LC , NeelBG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA96(8), 4240–4245 (1999).
  • Campbell RA , Bhat-NakshatriP, PatelNM, ConstantinidouD, AliS, NakshatriH. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α. J. Biol. Chem.276(13), 9817–9824 (2001).
  • Miller TW , HennessyBT, Gonzalez-ArguloAM, FoxEM, MillsGB, ChenH. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J. Clin. Invest.120(7), 2406–2413 (2010).
  • Crowder RJ , PhommalyC, TaoY, HoogJ, LuoJ, PerouCM. PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor positive breast cancer. Cancer Res.69(9), 3955–3962 (2009).
  • Bosch A , LiZ, BergamaschiA, EllisH, ToskaE, PratA. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med.7(283), 283ra51 (2015).
  • Toska E , OsmanbeyogluHU, CastelP, ChanC, HendricksonRC, ElkabetsM. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science355(6331), 1324–1330 (2017).
  • Samuels Y , VelculescuVE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle3(10), e17–e19 (2004).
  • Karakas B , BachmannKE, ParkBH. Mutation of the PIK3CA oncogene in human cancers. Br. J. Cancer94, 455–459 (2006).
  • Campbell IG , RussellSE, ChoongDYH, MontgomeryKG, CiaravellaML, HooiCSF. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.64, 7678–7681 (2004).
  • Samuels Y , WangZ, BardelliA, SillimanN, PtakJ, SzaboS. High frequency of mutations of the PIK3CA gene in human cancers. Science304, 554 (2004).
  • Bachmann KE , ArganiP, SamuelsY, SillimanN, PtakJ, SzaboS. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther.3, 772–775 (2004).
  • Miller TW , RexerBN, GarrettJT, ArteagaCL. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res.13, 224 (2011).
  • Saal LH , HolmK, MaurerM, MemeoL, SuT, WangX. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res.65, 2554–2559 (2005).
  • Lehmann BD , BauerJA, SchaferJM, PendletonCS, TangL, JohnsonKC. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res.16(4), 406 (2014).
  • Burke JE , PerisicO, MassonGR, VadasO, WilliamsRL. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110 α (PIK3CA). PNAS109(38), 15259–15264 (2012).
  • Perez-Tenorio G , AlkhoriL, OlssonB, WalterssonMA, NordenskjöldB, RutqvistLE. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res.13(12), 3577–3584 (2007).
  • Rudolph M , AnzenederT, SchulzA, BeckmannG, ByrneAT, JeffersM. AKT1E17K mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer16, 622 (2016).
  • Miron A , VaradiM, CarrascoD, LiH, LuongoL, KimHJ. PIK3CA mutations in in situ and invasive breast carcinomas. Cancer Res.70(14), 5674–5678 (2010).
  • Dunlap J , LeC, ShuklaA, PattersonJ, PresnellA, HeinrichMC. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res. Treat.120(2), 409–418 (2010).
  • Isakoff SJ , EngelmannJA, IrieHY, BrachmannSM, PearlineRV, CantleyLC. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res.65(23), 10992–11000 (2005).
  • Zhao JJ , LiuZ, WangL, ShinE, LodaMF, RobertsTM. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc. Natl Acad. Sci. USA102(51), 18443–18448 (2005).
  • Kalinsky K , JacksLM, HeguyA, PatilS, DrobnjakM, UmeshkumarK. PIK3CA mutation associates with improved outcome in breast cancer. Clin. Cancer Res.15(16), 5049–5059 (2009).
  • Cizkova M , SusiniA, VacherS, Cizeron-ClairacG, AndrieuC, DriouchK. PIK3CA mutation impact on survival in breast cancer patients and in ERα, PR and ERBB2-based subgroups. Breast Cancer Res.14, R28 (2012).
  • Ellis MJ , LinL, CrowderR, TaoY, HoogJ, SniderJ. Phosphatidyl-inositol-3-kinase aplha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res. Treat.119(2), 379–390 (2010).
  • Lopez-Knowles E , SegalCV, GaoQ, Garcia-MurillasI, TurnerNC, SmithI. Relationship of PIK3CA mutation and pathway activity with antiproliferative response to aromatase inhibition. Breast Cancer Res.16, R68 (2014).
  • Sabine VS , CrozierC, BrookesCL, DrakeC, PiperT, vande Velde CJH. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J. Clin. Oncol.32(27), 2951–2959 (2014).
  • Beelen K , OpdamM, SeversonTM, KoornstraRHT, VincentAD, WesselingJ. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res.16, R13 (2014).
  • Loi S , MichielsS, LambrechtsD, FumagalliD, ClaesB, Kellokumpu-LehtinenP-L. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. JNCI105(13), 960–967 (2013).
  • Stemke-Hale K , Gonzalez-AnguloAM, LluchA, NeveRM, KuoW-L, DaviesM. An integrative genomic and proteomic analysis of PIK3CA PTEN and AKT mutations in breast cancer. Cancer Res.68(15), 6084–6091 (2008).
  • Pang B , ChengS, SunS-P, AnC, LiuZ-Y, FengX. Prognostic role of PIK3CA mutations and their association with hormone receptor expression in breast cancer: a meta-analysis. Sci. Rep.4, 6255 (2014).
  • Barbareschi M , ButtittaF, FelicioniL, CotrupiS, BarassiF, DelGrammastro M. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin. Cancer Res.13(20), 6064–6069 (2007).
  • Mangone FR , BobrovnitchaiaIG, SalaorniS, ManuliE, NagaiMA. PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. Clinics (Sao Paulo)67(11), 1285–1290 (2012).
  • Yuan H , ChenJ, LiuY, OuyangT, LiJ, WangT. Association of PIK3CA mutation status before and after neoadjuvant chemotherapy with response to chemotherapy in women with breast cancer. Clin Cancer Res.21(19), 4365–4372 (2015).
  • Micalizzi DS , JuricD, NiemierkoA, ReynoldsKL, BorgerD, VoraSR. Abstract P1-13-03: association of PIK3CA mutation with clinical response to specific endocrine therapies in metastatic hormone receptor positive (HR+) breast cancer. Cancer Res.75(Suppl. 9), Abstract nr P1-13-03 (2015).
  • Ramirez-Ardila DE , HelmijrJC, LookMP, LurkinI, Ruigrok-RitstierK, van LaereS. Hotspot mutations in PIK3CA associate with first-line treatment outcome for aromatase inhibitors but not for tamoxifen. Breast Cancer Res. Treat.139, 39–49 (2013).
  • Moynahan ME , ChenD, HeW, SungP, SamoilaA, YouD. Correlation between PIK3CA mutations in cell-free DNA and everolimus efficacy in HR +, HER2 − advanced breast cancer: results from BOLERO-2. Br. J. Cancer116, 726–730 (2017).
  • Sanchez CG , MaCX, CrowderRJ, GuintoliT, PhommalyC, GaoF. Preclinical modeling of combined phosphatidsylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res.13, R21 (2011).
  • Mosele F , StefanovskaB, LusqueA, TranDien A, GarberisI, DroinN. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann. Oncol.31(3), 377–386 (2020).
  • Krop IE , MayerIA, GanjuV, DicklerM, JohnstonS, MoralesS. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomized, double-blind, placebo-controlled, Phase II trial. Lancet17, 811–821 (2016).
  • Baselga J , ImS-A, IwataH, CortesJ, DeLaurentiis M, JiangZ. Buparlisib plus fulvestrant versus placebo in postmenopausal, hormone receptor-positive, HER-2 negative, advanced breast cancer (BELLE-2): a randomized, double-blind, placebo-controlled, Phase III trial. Lancet18, 904–916 (2017).
  • Di Leo A , JohnstonS, LeeKS, CiruelosE, LonningPE, JanniW. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomized, double-blind, placebo-controlled Phase III trial. Lancet19, 87–100 (2018).
  • Fritsch C , HuangA, Chatenay-RivaudayC, SchnellC, ReddyA, LiuM. Characterization of the novel and specific PI3Ka inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther.13(5), 1117–1129 (2014).
  • Furet P , GuagnanoV, FairhurstRA, Imbach-WeeseP, BruceI, KnappM. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg. Med. Chem. Lett.23(13), 3741–3748 (2013).
  • Huang A , FritschC, WilsonC, ReddyA, LiuM, LeharJ. Abstract 3749: single agent activity of PIK3CA inhibitor BYL719 in a broad cancer cell line panel. Cancer Res.72(Suppl. 8), Abstract nr 3749 (2012).
  • Manna P , JainSK. PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCzeta/lambda phosphorylation in 3T3L1 adipocytes. Mol. Cell. Biochem.381(0), 291–299 (2013).
  • Sano H , EguezL, TeruelMN, FukudaM, ChuangTD, ChavezJA. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metabolism5(4), 293–303 (2007).
  • Friedrichsen M , BirkJB, RichterEA, Ribel-MadsenR, PehmollerC, HansenBF. AKT2 influences glycogen synthase activity in human skeletal muscle through regulation of NH(2)-terminal (sites 2 + 2a) phosphorylation. Am. J. Physiol. Endocrinol. Metab.304(6), E631–E639 (2013).
  • Schnell CR , FerratT, WyssD, TinettoW, ToblerS, FritschC. Abstract 3933: circadian timing regimen for alpelisib (NVP-BYL719), a selective inhibitor of the class Ia PI3K isoform alpha to maximize therapeutic index. Cancer Res.78(Suppl. 13), Abstract nr 3933 (2018).
  • James A , BlumensteinL, GlaenzelU, JinY, DemaillyA, JakabA. Absorption, distribution, metabolism, and excretion of [14C]BYL719 (alpelisib) in healthy male volunteers. Cancer Chemother. Pharmacol.76, 751–760 (2015).
  • Juric D , RodonJ, TaberneroJ, JankuF, BurrisHA, SchellensJHM. Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. J. Clin. Oncol.36(13), 1291–1299 (2018).
  • De Buck SS , JakabA, BoehmM, BootleD, JuricD, QuadtC. Population pharmacokinetics and pharmacodynamics of BYL719, a phosphoinositide 3-kinase antagonist, in adult patients with advanced solid malignancies. Br. J. Clin. Pharmacol.78(3), 543–555 (2014).
  • Ando Y , IwasaS, TakahashiS, SakaH, KakizumeT, NatsumeK. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci.110, 1021–1031 (2019).
  • Munster PN , HamiltonEP, EstevezLG, DeBoer RH, MayerIA, CamponeM. Phase IB study of LEE011 and BYL719 in combination with letrozole in ER+, HER2-breast cancer. J. Clin. Oncol.32(Suppl. 26), 143–143 (2014).
  • Juric D , JankuF, RodonJ, BurrisHA, MayerIA, SchulerM. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wildtype estrogen receptor-positive advanced breast cancer. A Phase Ib clinical trial. JAMA Oncol.5(2), e184475 (2018).
  • Nunnery SE , MayerIA. Management of toxicity to isoform α-specific PI3K inhibitors. Ann. Oncol.30(Suppl. 10), x21–x26 (2019).
  • Liu Z , ZhuG, GetzenbergRH, VeltriRW. The upregulation of PI3K/Akt and MAP kinase pathways is associated with resistance of microtubule-targeting drugs in prostate cancer. J. Cell. Biochem.116, 1341–1349 (2015).
  • Rodon J , CuriglianoG, DelordJ-P, HarbW, AzaroA, HanY. A Phase Ib, open-label, dose-finding study of alpelisib in combination with paclitaxel in patients with advanced solid tumors. Oncotarget9(60), 31709–31718 (2018).
  • Vuylsteke P , HuizingM, PetrakovaK, RoylanceR, LaingR, ChanS. Pictilisib PIK3Kinase inhibitor (a phosphatidylinositol 3-kinase [PI3K] inhibitor) plus paclitaxel for the treatment of hormone receptor-positive, HER-2 negative, locally recurrent, or metastatic breast cancer: interim analysis of the multicenter, placebo-controlled, Phase II randomized PEGGY study. Ann. Oncol.27, 2059–2066 (2016).
  • Martin M , ChanA, RirixL, O’ShaughnessyJ, HeggR, ManikhasA. A randomized adaptive Phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2 - advanced breast cancer (BELLE-4). Ann. Oncol.28, 313–320 (2017).
  • Sharma P , AbramsonVG, O’DeaA, LewisS, ScottJN, WardJ. Safety and efficacy results from Phase I study of BYL719 plus nab-paclitaxel in HER-2 negative metastatic breast cancer. Cancer Res.77(Suppl. 4), Abstract nr P6-11-08 (2017).
  • Jain S , ShahAN, Santa-MariaCA, SiziopikouK, RademakerA, HelenowskiI. Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res. Treat.171, 371–381 (2018).
  • Mayer IA , AbramsonVG, FormisanoL, BalkoJM, EstradaMV, SandersME. A Phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2− metastatic breast cancer. Clin. Cancer Res.23(1), 26–34 (2016).
  • Mayer IA , PratA, EgleD, BlauS, FidalgoJAP, GnantM. A Phase II randomized study of neoadjuvant letrozole plus alpelisib for hormone receptor positive, human epidermal growth factor receptor 2-negative breast cancer (NEO-ORB). Clin. Cancer Res.25(10), 2975–2987 (2019).
  • Ma CX , LuoJ, NaughtonM, AdemuyiwaF, SureshR, GriffithM. A Phase 1 trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor positive metastatic breast cancer. Clin. Cancer Res.22(7), 1583–1591 (2016).
  • André F , CiruelosE, RubovskyG, CamponeM, LoiblS, RugoHS. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med.380(20), 1929–1940 (2019).
  • Franz MJ , BantleJP, BeebeCA, BrunzellJD, ChiassonJL, GargA. Nutrition principles and recommendations in diabetes. Diabetes Care27(Suppl. 1), S36 (2004).
  • Busaidy NL , FarookiA, DowlatiA, PerentesisJP, DanceyJE, DoyleLA. Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR Pathway. J. Clin. Oncol.30, 2919–2928 (2012).
  • Hopkins BD , PauliC, DuX, WangDG, LiX, WuD. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature560(7719), 499–503 (2018).
  • Calautti E , LiJ, SaoncellaS, BrissetteJL, GoetinckPF. Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem.280(38), 32856–32865 (2005).
  • Dickler MN , SauraC, RichardsDA, KropIE, CervantesA, BedardPL. Phase II study of Taselisib (GDC-0032) in combination with fulvestrant in patients with HER-2 negative, hormone-receptor positive advanced breast cancer. Clin. Cancer Res.24(18), 4380–4387 (2018).
  • Greenwell IB , IpA, CohenJB. PI3K inhibitors: understanding toxicity mechanisms and management. Oncology (Williston Park)31(11), 821–828 (2017).
  • Benson AB , AjaniJA, CatalanoRB, EngelkingC, KornblauSM, MartensonJA. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol.22, 2918–2926 (2004).
  • Cheson BD , O’BrienS, EwerMS, GoncalvesMD, FarookiA, LenzG. Optimal management of adverse events from copanlisib in the treatment of patients with Non-Hodgkin lymphomas. Clin. Lymphoma, Myeloma Leuk.19(3), 135–141 (2019).
  • Laurent P-A , HechlerB, SolinhacR, RagabA, CabouC, AnquetilT. Impact of PI3Kα (phosphoinositide 3-kinase alpha) inhibition on hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol.38(9), 2041–2053 (2018).
  • Yang T , MeoliDF, MoslehiJ, RodenDM. Inhibition of the α-subunit of phosphoinositide 3-kinase in heart increases late sodium current and is arrhythmogenic. J. Pharmacol. Exp. Ther.365(3), 460–466 (2018).
  • Huw LY , O’BrienC, PanditaA, MohanS, SpoerkeJM, LuS. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis2(e83), 1–7 (2013).
  • Nakanishi Y , WalterK, SpoerkeJM, O’BrienC, HuwLY, HamptonGM. Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110β. Cancer Res.76(5), 1193–1203 (2016).
  • Juric D , CastelP, GriffithM, GriffithOL, WonHH, EllisHet al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Ka inhibitor. Nature518(7538), 240–244 (2015).
  • Costa C , EbiH, MartiniM, BeausoleilSA, FaberAC, JakubikCT. Measurement of PIP3 levels reveals an unexpected role for p110β in early adaptive responses to p110α-specific inhibitors in luminal breast cancer. Cancer Cell.27(1), 97–108 (2015).
  • Schwartz S , WongvipatJ, TrigwellCB, HancoxU, CarverBS, Rodrik-OutmezguineV. Feedback suppression of PI3Kα signaling in PTEN mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell27(1), 109–122 (2015).
  • Razavi P , DicklerMN, ShahPD, ToyW, BrownDN, WonHH. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat. Cancer.1, 382–393 (2020).
  • Elkabets M , VoraS, JuricD, MorseN, Mino-KenudsonM, MuranenT. mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci. Transl. Med.5(196), 196ra99 (2013).
  • Baselga J , CuriglianoG, MartínM, AndréF, BeckJT, TortoraG. Abstract CT061: a Phase Ib study of alpelisib (BYL719) + everolimus ± exemestane in patients with advanced solid tumors or HR+/HER2−breast cancer. Cancer Res.76(Suppl. 14), (2016).
  • Varghese AM , MooreKN, HamiltonEP, HymanDM, JhaveriKL, WangXA. Safety and tolerability of the dual PI3K/mTOR inhibitor LY3023414 in combination with fulvestrant in treatment refractory advanced breast cancer patients. J. Clin. Oncol.35(Suppl. 15), 1064–1064 (2017).
  • Radovich M , SolzakJP, HancockBA, StornioloAMV, SchneiderBP, MillerKD. Abstract OT3-06-02: an initial safety study of gedatolisib plus PTK7-ADC for metastatic triple-negative breast cancer. Cancer Res.79(Suppl. 4), (2019).
  • Britschgi A , AndraosR, BrinkhausH, KlebbaI, RomanetV, MuellerU. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell.22, 796–811 (2012).
  • Dey N , Leyland-JonesB, DeP. MYC-xing it up with PIK3CA mutation and resistance to PI3K inhibitors: summit of two giants in breast cancers. Am. J. Cancer Res.5(1), 1–19 (2015).
  • Le X , AntonyR, RazaviP, TreacyDJ, LuoF, GhandiM. Systematic functional characterization of resistance to PI3K inhibition in breast cancer. Cancer Discov.6(10), 1134–1147 (2016).
  • Serra V , EichhornPJ, García-GarcíaC, IbrahimYH, PrudkinL, SánchezG. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J. Clin. Invest.123(6), 2551–2563 (2013).
  • Durrant ST , NaglerA, GuglielmelliP, LavieD, le CoutreP, GisslingerH. Results from HARMONY: an open-label, multicenter, 2-arm, Phase Ib, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica104(12), e551–e554 (2019).
  • Cortes J , TamuraK, DeAngeloDJ, de BonoJ, LorenteD, MindenM. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br. J. Cancer118, 1425–1433 (2018).
  • Averous J , FonsecaBD, ProudCG. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene27(8), 1106–1113 (2008).
  • Vora SR , JuricD, KimN, Mino-KenudsonM, HuynhT, CostaCet al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell.26(1), 136–149 (2014).
  • Rehman FL , LordCJ, AshworthA. The promise of combining inhibition of PI3K and PARP as cancer therapy. Cancer Discov.2(11), 982–984 (2012).
  • Konstantinopoulos PA , BarryWT, BirrerM, WestinSN, CadooKA, ShapiroGI. Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion Phase Ib trial. Lancet20(4), 570–580 (2019).
  • Brandao M , CaparicaR, EigerD, de AzambujaE. Biomarkers of response and resistance to PI3K inhibitors in estrogen receptor-positive breast cancer patients and combination therapies involving PI3K inhibitors. Ann. Oncol.30(Suppl. 10), x27–x42 (2019).
  • Chakrabarty A , SánchezV, KubaMG, RinehartC, ArteagaCL. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. PNAS8(109), 2718–2723 (2012).
  • Serra V , ScaltritiM, PrudkinL, EichhornPJA, IbrahimYH, ChandarlapatyS. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene30, 2547–2557 (2011).
  • Filho OM , GoelS, BarryWT, HamiltonEP, TolaneySM, YardleyDA. A mouse-human Phase I co-clinical trial of taselisib in combination with TDM1 in advanced HER2-positive breast cancer (MBC). J. Clin. Oncol.35(Suppl. 15), 1030–1030 (2017).
  • Keegan NM , WalsheJM, ToomeyS, GulloG, KennedyMJ, BulgerKN. A Phase Ib trial of copanlisib and trastuzumab in pretreated recurrent or metastatic HER2-positive breast cancer “PantHER”. J. Clin. Oncol.36(Suppl. 15), 1036–1036 (2018).
  • Coussy F , BottyRE, LavigneM, GuC, FuhrmannL, BriauxA. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J. Hematol. Oncol.13(13), 1–10 (2020).
  • Banerji U , SmithAD, ZiviA, LorenteD, RihawiK, TunariuN. Dual targeting of RAF-MEK-ERK and PI3K-AKT-mTOR pathways in RAS-mutant cancers: preclinical insights and institutional experience from a clinical trial of binimetinib (MEK162) plus BYL719. J. Clin. Oncol.32(Suppl. 15), 13559–13559 (2014).
  • Wheler JJ , AtkinsJT, JankuF, MoulderSL, StephensPJ, YelenskyR. Presence of both alterations in FGFR/FGF and PI3K/AKT/mTOR confer improved outcomes for patients with metastatic breast cancer treated with PI3K/AKT/mTOR inhibitors. Oncoscience3(5–6), 164–172 (2016).
  • Hyman DM , TranB, JaimeJC, GarraldaE, MachielsJ-PH, SchellensJHM. Phase Ib study of BGJ398 in combination with BYL719 in patients (pts) with select advanced solid tumors. J. Clin. Oncol.34(Suppl. 15), 2500–2500 (2016).
  • Usman MW , GaoJ, ZhengT, RuiC, LiT, BianX. Macrophages confer resistance to PI3K inhibitor GDC-0941 in breast cancer through the activation of NF-κB signaling. Cell Death Disease.9(809), 1–12 (2018).
  • Ali K , SoondDR, PineiroR, HagemannT, PearceW, LimEL. Inactivation of the PI3K p110δ breaks regulatory T cell-mediated immune tolerance to cancer. Nature510(7505), 407–411 (2014).
  • Schmid MC , AvraamidesCJ, DippoldHC, FrancoI, FoubertP, ElliesLG. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3Kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell.19(6), 715–727 (2011).
  • Fokas E , ImJH, HillS, XameenS, StratfordM, BeechJ. Dual inhibition of the PI3K/mTOR pathway increases tumor radiosensitivity by normalizing tumor vasculature. Cancer Res.72(1), 239–248 (2012).
  • Cretella D , DigiacomoG, GiovanettiE, CavazonniA. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers11(1318), 1–17 (2019).
  • Sun C , MezzadraR, SchumacherTN. Regulation and function of the PD-L1 checkpoint. Immunity48, 434–452 (2018).
  • Sai J , OwensP, NovitskiySV, HawkinsOE, VilgelmAE, YangJ. PI3K inhibition reduces mammary tumor growth and facilitates anti-tumor immunity and anti-PD1 responses. Clin. Cancer Res.23(13), 3371–3384 (2017).
  • Baselga J , DentSF, CortésJ, ImY-H, DiérasV, HarbeckN. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J. Clin. Oncol.36(Suppl. 18), 1006–1006 (2018).
  • Rugo HS , BianchiGV, ChiaSKL, TurnerNC, JuricD, JacotW. BYLieve: a Phase II study of alpelisib (ALP) with fulvestrant (FUL) or letrozole (LET) for treatment of PIK3CA mutant, hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (aBC) progressing on/after cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) therapy. J. Clin. Oncol.36(Suppl. 15), TPS1107–TPS1107 (2018).
  • Rugo HS , LereboursF, CiruelosE, DrullinskyP, BorregoMR, NevenP. Alpelisib (ALP) + fulvestrant (FUL) in patients (pts) with PIK3CA-mutated (mut) hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (ABC) previously treated with cyclin-dependent kinase 4/6 inhibitor (CDKi) + aromatase inhibitor (AI): BYLieve study results. J. Clin. Oncol.38(Suppl; abstr 1006), (2020).
  • Vernieri C , CortiF, NichettiF, LigorioF, ManglavitiS, ZattarinE. Everolimus versus alpelisib in advanced hormone receptor-positive HER2-negative breast cancer: targeting different nodes of /AKT/mTORC1 pathway with different clinical implications. Breast Cancer Res.22(33), 1–13 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.