464
Views
11
CrossRef citations to date
0
Altmetric
Drug Evaluation

Belantamab Mafodotin in the Treatment of Relapsed or Refractory Multiple Myeloma

, ORCID Icon &
Pages 2783-2798 | Received 22 May 2020, Accepted 31 Jul 2020, Published online: 02 Sep 2020

References

  • Mikhael J , IsmailaN, CheungMCet al. Treatment of multiple myeloma: ASCO and CCO joint clinical practice guideline. J. Clin. Oncol.37(14), 1228–1263 (2019).
  • Swerdlow SH , CampoE, HarrisNLet al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. International Agency for Research on Cancer (IARC) Publications, Lyon, France (2017).
  • Lonial S , LeeHC, BadrosAet al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, Phase II study. Lancet Oncol.21(2), 207–221 (2020).
  • Trudel S , LendvaiN, PopatRet al. Targeting B-cell maturation antigen with GSK2857916 antibody–drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion Phase I trial. Lancet Oncol.19(12), 1641–1653 (2018).
  • Trudel S , LendvaiN, PopatRet al. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: an update on safety and efficacy from dose expansion Phase I study. Blood Cancer J.9(4), 37 (2019).
  • Kumar SK , DimopoulosMA, KastritisEet al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia31(11), 2443–2448 (2017).
  • Kumar SK , RajkumarV, KyleRAet al. Multiple myeloma. Nat. Rev. Dis. Primers3, 17046 (2017).
  • Gandhi UH , CornellRF, LakshmanAet al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia33(9), 2266–2275 (2019).
  • Chauhan D , SinghAV, BrahmandamMet al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell16(4), 309–323 (2009).
  • Mahnke K , RingS, JohnsonTSet al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur. J. Immunol.37(8), 2117–2126 (2007).
  • Neri P , BahlisNJ, LonialS. New strategies in multiple myeloma: immunotherapy as a novel approach to treat patients with multiple myeloma. Clin. Cancer Res.22(24), 5959–5965 (2016).
  • Ray A , DasDS, SongYet al. Targeting PD1–PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia29(6), 1441–1444 (2015).
  • Rutella S , LocatelliF. Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin. Dev. Immunol.2012, 196063 (2012).
  • Casneuf T , AdamsHC, vanDe Donk Net al. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemiadoi:10.1038/s41375-020-0855-4 (2020) ( Epub ahead of print).
  • Krejcik J , CasneufT, NijhofISet al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion and skews T-cell repertoire in multiple myeloma. Blood128(3), 384–394 (2016).
  • Dimopoulos MA , DytfeldD, GrosickiSet al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med.379(19), 1811–1822 (2018).
  • Dimopoulos MA , LonialS, BettsKAet al. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer124(20), 4032–4043 (2018).
  • Dimopoulos MA , OriolA, NahiHet al. Daratumumab, lenalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med.375(14), 1319–1331 (2016).
  • Dimopoulos MA , San-MiguelJ, BelchAet al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX. Haematologica103(12), 2088–2096 (2018).
  • Lonial S , DimopoulosM, PalumboAet al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med.373(7), 621–631 (2015).
  • Lonial S , WeissBM, UsmaniSZet al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, Phase II trial. Lancet387(10027), 1551–1560 (2016).
  • Palumbo A , Chanan-KhanA, WeiselKet al. Daratumumab, bortezomib and dexamethasone for multiple myeloma. N. Engl. J. Med.375(8), 754–766 (2016).
  • Spencer A , LentzschS, WeiselKet al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR. Haematologica103(12), 2079–2087 (2018).
  • Attal M , RichardsonPG, RajkumarSVet al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, Phase III study. Lancet394(10214), 2096–2107 (2019).
  • Hsi ED , SteinleR, BalasaBet al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res.14(9), 2775–2784 (2008).
  • Leo R , BoekerM, PeestDet al. Multiparameter analyses of normal and malignant human plasma cells: CD38++, CD56+, CD54+, cIg+ is the common phenotype of myeloma cells. Ann. Hematol.64(3), 132–139 (1992).
  • Malavasi F , FunaroA, RoggeroS, HorensteinA, CalossoL, MehtaK. Human CD38: a glycoprotein in search of a function. Immunol. Today15(3), 95–97 (1994).
  • Bonello F , MinaR, BoccadoroM, GayF. Therapeutic monoclonal antibodies and antibody products: current practices and development in multiple myeloma. Cancers (Basel)12(1), 15–39 (2019).
  • Sanchez E , LiM, KittoAet al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br. J. Haematol.158(6), 727–738 (2012).
  • Claudio JO , Masih-KhanE, TangHet al. A molecular compendium of genes expressed in multiple myeloma. Blood100(6), 2175–2186 (2002).
  • Tai YT , LiXF, BreitkreutzIet al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res.66(13), 6675–6682 (2006).
  • Rennert P , SchneiderP, CacheroTGet al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J. Exp. Med.192(11), 1677–1684 (2000).
  • Hengeveld PJ , KerstenMJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy?Blood Cancer J.5, e282 (2015).
  • Moreaux J , LegouffeE, JourdanEet al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood103(8), 3148–3157 (2004).
  • Peperzak V , VikstromI, WalkerJet al. Mcl-1 is essential for the survival of plasma cells. Nat. Immunol.14(3), 290–297 (2013).
  • Shaffer AL , EmreNC, LamyLet al. IRF4 addiction in multiple myeloma. Nature454(7201), 226–231 (2008).
  • Shen X , ZhangX, XuG, JuS. BAFF-R gene induced by IFN-gamma in multiple myeloma cells is related to NF-kappaB signals. Cell Biochem. Funct.29(6), 513–520 (2011).
  • Shen X , ZhuW, ZhangX, XuG, JuS. A role of both NF-kappaB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Mol. Cell. Biochem.357(1–2), 21–30 (2011).
  • Salem DA , MaricI, YuanCMet al. Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in Myeloma. Leuk. Res.71, 106–111 (2018).
  • Carpenter RO , EvbuomwanMO, PittalugaSet al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res.19(8), 2048–2060 (2013).
  • Tai YT , MayesPA, AcharyaCet al. Novel anti-B-cell maturation antigen antibody–drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood123(20), 3128–3138 (2014).
  • Tai YT , AcharyaC, AnGet al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood127(25), 3225–3236 (2016).
  • Ghermezi M , LiM, VardanyanSet al. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients. Haematologica102(4), 785–795 (2017).
  • Sanchez E , SmithEJ, YasharMAet al. The role of B-cell maturation antigen in the biology and management of and as a potential therapeutic target in, multiple myeloma. Target Oncol.13(1), 39–47 (2018).
  • Sanchez E , TanenbaumEJ, PatilSet al. The clinical significance of B-cell maturation antigen as a therapeutic target and biomarker. Expert Rev. Mol. Diagn.18(4), 319–329 (2018).
  • Sanchez E , GillespieA, TangGet al. Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin. Cancer Res.22(13), 3383–3397 (2016).
  • Topp MS , DuellJ, ZugmaierGet al. Treatment with AMG 420, an anti-B-cell maturation antigen (BCMA) bispecific T-Cell engager (BiTE®) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma (MM) patients: results of a first-in-human (FIH) Phase I dose escalation study. Am. Soc. Hematol.132(S1), 1010 (2018).
  • Topp MS , DuellJ, ZugmaierGet al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol.38(8), 775–783 (2020).
  • Lesokhin AM , RajeN, GasparettoCJet al. A Phase I, open-label study to evaluate the safety, pharmacokinetic, pharmacodynamic and clinical activity of PF-06863135, a B-cell maturation antigen/CD3 bispecific antibody, in patients with relapsed/refractory advanced multiple myeloma. Am. Soc. Hematol.132(S1), 3229 (2018).
  • Munshi NC andersonLD, ShahNet al. Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell therapy, in patients with relapsed and refractory multiple myeloma (RRMM): Initial KarMMa results. Am. Soc. Clin. Oncol.38(Suppl. 15), 8504–8504 (2020).
  • Raje N , BerdejaJ, LinYet al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med.380(18), 1726–1737 (2019).
  • Mailankody S , JakubowiakA, HtutMet al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the Phase I/II EVOLVE study (NCT03430011). Am. Soc. Clin. Oncol.38(Suppl. 15), Abstract no. 8504 (2020).
  • Mailankody S , HtutM, LeeKPet al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a Phase I/II multicenter study (EVOLVE). Am. Soc. Hematol.132(S1), 957 (2018).
  • Berdeja JG , MadduriD, UsmaniSet al. Update of CARTITUDE-1: a Phase Ib/II study of JNJ-4528, a B-cell maturation antigen (BCMA)-directed CAR-T-cell therapy, in relapsed/refractory multiple myeloma. Am. Soc. Oncol.38(Suppl. 15), 8505 (2020).
  • Brudno JN , MaricI, HartmanSDet al. T Cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol.36(22), 2267–2280 (2018).
  • Zhao WH , LiuJ, WangBYet al. A Phase I, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol.11(1), 141 (2018).
  • Xu J , ChenLJ, YangSSet al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA116(19), 9543–9551 (2019).
  • Cohen AD , GarfallAL, StadtmauerEAet al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest.129(6), 2210–2221 (2019).
  • Shah N , AlsinaM, SiegelDSet al. Initial results from a Phase I clinical study of bb21217, a next-generation anti-BCMA CAR T therapy. Am. Soc. Hematol.132(S1), 488 (2018).
  • Mailankody S , GhoshA, StaehrMet al. Clinical responses and pharmacokinetics of MCARH171, a human-derived bcma targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a Phase I clinical trial. Am. Soc. Hematol.132(S1), 959 (2018).
  • Liu Y , ChenZ, FangHet al. Durable remission achieved from BCMA-directed CAR-T therapy against relapsed or refractory multiple myeloma. Am. Soc. Hematol.132(S1), 956 (2018).
  • Li C , WangQ, ZhuHet al. T cell expressing anti B-Cell maturation antigen chimeric antigen receptors for plasma cell malignancies. Am. Soc. Hematol.132(S1), 1013 (2018).
  • Jie J , HaoS, JiangSet al. Phase I trial of the safety and efficacy of fully human anti-BCMA CAR T cells in relapsed/refractory multiple myeloma. Am. Soc. Hematol.134(S1), 4435 (2019).
  • Gregory T , CohenAD, CostelloCL, AlE. Efficacy and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM). Am. Soc. Hematol.132(S1), 1012 (2018).
  • Green DJ , PontM, SatherBDet al. Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Am. Soc. Hematol.132(S1), 1011 (2018).
  • Han L , GaoQ, ZhouKet al. The Phase I clinical study of CART targeting BCMA with humanized alpaca-derived single-domain antibody as antigen recognition domain. Am. Soc. Clin. Oncol.37(12), 2535 (2019).
  • Li C , ZhouJ, WangJet al. Clinical responses and pharmacokinetics of fully human BCMA targeting CAR T-cell therapy in relapsed/refractory multiple myeloma. Am. Soc. Clin. Oncol.37(15), 8013 (2019).
  • Montes De Oca M , BhattacharyaS, VitaliNet al. The anti-BCMA antibody–drug conjugate GSK2857916 drives immunogenic cell death and immune-mediated anti-tumor responses and in combination with an OX40 agent potentiates in vivo activity. Presented at: European Haematology Association.Amsterdam, The Netherlands,June 13–16, 2019.
  • Lonial S , LeeHC, BadrosAet al. DREAMM-2: single-agent belantamab mafodotin in relapsed/refractory multiple myeloma refractory to proteasome inhibitors, immunomodulatory agents and refractory and/or intolerant to anti-CD38mAbs. Eur. Hematol. Assoc. Abstract no. EP970 (2020).
  • Lonial S , LeeHC, BadrosA, AlE. DREAMM-2: single-agent belantamab mafodotin in patients with relapsed/refractory multiple myeloma (RRMM) – outcomes by prior therapy. Eur. Hematol. Assoc. Abstract no. 3177 (2020).
  • Lee HC , CohenAD, ChariAet al. DREAMM-2: single-agent belantamab mafodotin (GSK2857916) in patients with relapsed/rfractory multiple myeloma (RRMM) and renal impairment. Eur. Hematol. Assoc. Abstract no. 2328 (2020).
  • Cohen AD , TrudelS, LonialSet al. DREAMM-2: Single-agent belantamab mafodotin (GSK2857916) in patients with relapsed/refractory multiple myeloma (RRMM) and high-risk (HR) cytogenetics. Eur. Hematol. Assoc. (38(Suppl. 15), 8541–8541 (2020).
  • Eaton JS , MillerPE, MannisMJ, MurphyCJ. Ocular adverse events associated with antibody–drug conjugates in human clinical trials. J. Ocul. Pharmacol. Ther.31(10), 589–604 (2015).
  • Popat R , WarcelD, O’nionsJet al. Characterisation of response and corneal events with extended follow-up after belantamab mafodotin (GSK2857916) monotherapy for patients with relapsed multiple myeloma: a case series from the first-time-in-human clinical trial. Haematologica105(5), e261–e263 (2020).
  • Popat R , OpalinskaJ, EliasonLet al. Patient reported experience from part 2 of the first time in human study of the BCMA antibody drug conjugate GSK2857916 for advanced relapsed refractory multiple myeloma (DREAMM-1). Eur. Hematol. Assoc.3(S1), 643 (2019).
  • Eliason L , OpalinskaJ, MartinML, CorrellJ, GutierrezB, PopatR. DREAMM-1: patient perspectives from the first-in-human study of single-agent belantamab mafodotin for relapsed and refractory multiple myeloma (RRMM). Am. Soc. Clin. Oncol.38(Suppl. 15), Abstract no. e20531 (2020).
  • Annunziata CM , KohnEC, LorussoPet al. Phase I, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs31(1), 77–84 (2013).
  • Tannir NM , Forero-TorresA, RamchandrenRet al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest. New Drugs32(6), 1246–1257 (2014).
  • Thompson JA , MotzerRJ, MolinaAMet al. Phase I trials of anti-ENPP3 antibody-drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res.24(18), 4399–4406 (2018).
  • Thompson JA , Forero-TorresA, HeathEIet al. The effect of SGN-75, a novel antibody–drug conjugate (ADC), in treatment of patients with renal cell carcinoma (RCC) or non-Hodgkin lymphoma (NHL): a Phase I study. J. Clin. Oncol.29(Suppl. 15), 3071 (2011).
  • Fathi AT , ChenR, TrippettTMet al. Interim analysis of a Phase I study of the antibody–drug conjugate SGN-CD19A in relapsed or refractory B-lineage acute leukemia and highly aggressive lymphoma. Blood124(21), 963 (30 May–3 June 2014).
  • Moskowitz CH , Forero-TorresA, ShahBDet al. Interim analysis of a Phase I study of the antibody–drug conjugate SGN-CD19A in relapsed or refractory b-lineage non-Hodgkin lymphoma. Presented at: Am. Soc. Clin. Oncol.IL, USA (30 May–3 June 2014).
  • Donaghy H . Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody–drug conjugates. MAbs8(4), 659–671 (2016).
  • Zhao H , GulesserianS, GanesanSKet al. Inhibition of megakaryocyte differentiation by antibody–drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopenia. Mol. Cancer Ther.16(9), 1877–1886 (2017).
  • Nooka A , Stockerl-GoldsteinK, QuachHet al. DREAMM-6: safety and tolerability of belantamab mafodotin in combination with bortezomib/dexamethasone in relapsed/refractory multiple myeloma (RRMM). Am. Soc. Clin. Oncol.15(Suppl. 38) Abstract no. 8502. (2020).
  • Leonard JP , JungSH, JohnsonJet al. Randomized trial of lenalidomide alone versus lenalidomide plus rituximab in patients with recurrent follicular lymphoma: CALGB 50401 (alliance). J. Clin. Oncol.33(31), 3635–3640 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.