6,636
Views
20
CrossRef citations to date
0
Altmetric
Review

Precision Oncology: a Clinical and Patient Perspective

ORCID Icon, ORCID Icon, , , , & show all
Pages 3995-4009 | Received 01 Jun 2021, Accepted 22 Jun 2021, Published online: 19 Jul 2021

References

  • Chae YK , PanAP, DavisAAet al. Path toward precision oncology: review of targeted therapy studies and tools to aid in defining ‘actionability’ of a molecular lesion and patient management support. Mol. Cancer Ther.16(12), 2645–2655 (2017).
  • US Food & Drug Administration . Drug approvals and databases. www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases
  • European Medicines Agency . Medicines. www.ema.europa.eu/en/medicines
  • Sabir SR , YeohS, JacksonG, BaylissR. EML4-ALK variants: biological and molecular properties, and the implications for patients. Cancers9(9), 118 (2017).
  • Riely GJ , YuHA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin. Cancer Res.21(10), 2221–2226 (2015).
  • Chae YK , RanganathK, HammermanPSet al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget8(9), 16052–16074 (2017).
  • Zhou Y , WuC, LuG, HuZ, ChenQ, DuX. FGF/FGFR signaling pathway involved resistance in various cancer types. J. Cancer.11(8), 2000–2007 (2020).
  • Li AY , McCuskerMG, RussoAet al. RET fusions in solid tumors. Cancer Treat. Rev.81, 101911 (2019).
  • Subbiah V , CoteGJ. Advances in targeting RET-dependent cancers. Cancer Discov.10(4), 498–505 (2020).
  • Giustini NP , BazhenovaL. ROS1-rearranged non-small cell lung cancer. Thorac. Surg. Clin.30(2), 147–156 (2020).
  • Patil T , SimonsE, MushtaqR, PachecoJM, DoebeleRC, BowlesDW. Targeted therapies for ROS1-rearranged non-small cell lung cancer. Drugs Today55(10), 641–652 (2019).
  • Yang J , NieJ, MaX, WeiY, PengY, WeiX. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer18(1), 26 (2019).
  • Croce L , CoperchiniF, MagriF, ChiovatoL, RotondiM. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget10(61), 6623–6640 (2019).
  • Kelly CM , GutierrezSainz L, ChiP. The management of metastatic GIST: current standard and investigational therapeutics. J. Hematol. Oncol.14(1), 2 (2021).
  • File D , CuriglianoG, CareyLA. Escalating and de-escalating therapy for early-stage HER2-positive breast cancer. Am. Soc. Clin. Oncol. Educ. Book40, 1–11 (2020).
  • Jang A , SartorO, BarataPC, PallerCJ. Therapeutic potential of PARP inhibitors in the treatment of metastatic castration-resistant prostate cancer. Cancers12(11), 3467 (2020).
  • Li K , LuoH, HuangL, LuoH, ZhuX. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int.20, 16 (2020).
  • Amatu A , Sartore-BianchiA, BencardinoK, PizzutiloEG, TosiF, SienaS. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol.30(Suppl. 8), VIII5–VIII15 (2019).
  • Marino FZ , PagliucaF, RonchiAet al. NTRK fusions, from the diagnostic algorithm to innovative treatment in the era of precision medicine. Int. J. Mol. Sci.21(10), 1–15 (2020).
  • Shao C , LiG, HuangLet al. Prevalence of high tumor mutational burden and association with survival in patients with less common solid tumors. JAMA Netw. Open.3(10), e2025109 (2020).
  • Xie J , LuX, WuXet al. Capture-based next-generation sequencing reveals multiple actionable mutations in cancer patients failed in traditional testing. Mol. Genet. Genom. Med.4(3), 262–272 (2016).
  • Hillman RT , WardK, SaenzC, McHaleM, PlaxeS. Barriers prevent patient access to personalized therapies identified by molecular tumor profiling of gynecologic malignancies. J. Pers. Med.5(2), 165–173 (2015).
  • Arsenic R , TreueD, LehmannAet al. Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clin. Pathol.15, 20 (2015).
  • Hux A , LewisA, SachwitzD, GregoryT. Clinical utility of next-generation sequencing in precision oncology. J. Am. Acad. Phys. Assist.32(1), 35–39 (2019).
  • Meldi K , QinT, BuchiFet al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J. Clin. Invest.125(5), 1857–1872 (2015).
  • Walker BA , BoyleEM, WardellCPet al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol.33(33), 3911–3920 (2015).
  • Sato Y , MatobaR, KatoK. Recent advances in liquid biopsy in precision oncology research. Biol. Pharm. Bull.42(3), 337–342 (2019).
  • Pfaff E , de BeaumaisT, MarchaisAet al. NTRK alterations in pediatric relapsed/refractory/very high risk malignancies identified through European clinical sequencing programs constitute promising drug targets. J. Clin. Oncol. Prec. Oncol.5, 450–454 (2021).
  • Brown NA , Elenitoba-JohnsonKSJ. Enabling precision oncology through precision diagnostics. Annu. Rev. Pathol.15, 97–121 (2020).
  • Galuppini F , DalPozzo CA, DeckertJ, LoupakisF, FassanM, BaffaR. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Intern.19, 209 (2019).
  • Tan O , ShresthaR, CunichM, SchofieldDJ. Application of next-generation sequencing to improve cancer management: a review of the clinical effectiveness and cost-effectiveness. Clin. Genet.93(3), 533–544 (2018).
  • Ascierto PA , KirkwoodJM, GrobJ-Jet al. The role of BRAF V600 mutation in melanoma. J. Transl. Med.10, 85 (2012).
  • Planchard D , SmitEF, GroenHJMet al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, Phase 2 trial. Lancet Oncol.18(10), 1307–1316 (2017).
  • Long GV , StroyakovskiyD, GogasHet al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, Phase 3 randomised controlled trial. Lancet386(9992), 444–451 (2015).
  • Subbiah V , KreitmanRJ, WainbergZAet al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol.36(1), 7–13 (2018).
  • Subbiah V , LassenU, ÉlezEet al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): a Phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol.21(9), 1234–1243 (2020).
  • Yang H , HigginsB, KolinskyKet al. Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res.72(3), 779–789 (2012).
  • van Geel RMJM , TaberneroJ, ElezEet al. A Phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov.7(6), 610–619 (2017).
  • Mao M , TianF, MariadasonJMet al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin. Cancer Res.19(3), 657–667 (2013).
  • Alshareef A . Novel molecular challenges in targeting anaplastic lymphoma kinase in ALK-expressing human cancers. Cancers9(11), 1–13 (2017).
  • Brown NA , Elenitoba-JohnsonKSJ. Enabling precision oncology through precision diagnostics. Annu. Rev. Pathol. Mech. Dis.15(1), 97–121 (2020).
  • Kurnit K , DumbravaE, LitzenburgerBet al. Precision oncology decision support: current approaches and strategies for the future. Clin. Cancer Res.24(12), 2719–2731 (2018).
  • Khan T , StewartM, BlackmanSet al. Accelerating pediatric cancer drug development: challenges and opportunities for pediatric master protocols. Ther. Innov. Regul. Sci.53(2), 270–278 (2019).
  • Beltran H , EngK, MosqueraJMet al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol.1(4), 466–474 (2015).
  • Kato S , KimKH, LimHJet al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-one strategy. Nat. Commun.11(1), 4965 (2020).
  • Massard C , MichielsS, FertéCet al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov.7(6), 586–595 (2017).
  • Tuxen IV , RohrbergKS, OestrupOet al. Copenhagen Prospective Personalized Oncology (CoPPO) – clinical utility of using molecular profiling to select patients to Phase I trials. Clin. Cancer Res.25(4), 1239–1247 (2019).
  • Zehir A , BenayedR, ShahRHet al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10.000 patients. Nat. Med.23(6), 703–713 (2017).
  • Brock A , HuangS. Precision oncology: between vaguely right and precisely wrong. Cancer Res.77(23), 6473–6479 (2017).
  • Sánchez NS , MillsGB, ShawKRM. Precision oncology: neither a silver bullet nor a dream. Pharmacogenomics18(16), 1525–1539 (2017).
  • American Association for Cancer Research . AACR Project GENIE. http://aacr.org/genie
  • AACR Project GENIE Consortium . AACR Project GENIE: powering precision medicine through an international consortium. Cancer Disc.7(8), 818–831 (2017).
  • Syapse Inc . Syapse Learning Health Network (2021). www.syapse.com/offerings/syapse-learning-health-network
  • Northwestern University . OncoSET Precision Medicine (2021). http://cancer.northwestern.edu/oncoset
  • Schwaederle M , ParkerBA, SchwabRBet al. Molecular tumor board: the University of California-San Diego Moores Cancer Center experience. Oncologist19(6), 631–636 (2014).
  • Patel M , KatoSM, KurzrockR. Molecular tumor boards: realizing precision oncology therapy. Clin. Pharmacol. Ther.103(2), 206–209 (2018).
  • Li MM , DattoM, DuncavageEJet al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn.19(1), 4–23 (2017).
  • Mateo J , ChakravartyD, DienstmannRet al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol.29(9), 1895–1902 (2018).
  • Meric-Bernstam F , JohnsonA, HollaVet al. A decision support framework for genomically informed investigational cancer therapy. J. Natl Cancer Inst.107(7), djv098 (2015).
  • University of Texas MD Anderson Cancer Center . Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (2021). www.mdanderson.org/research/departments-labs-institutes/institutes/zayed-institute-for-personalized-cancer-therapy.html
  • IBM Watson Health . IB Watson for Genomics. www.ibm.com/watson/health/oncology/genomics/
  • Patel NM , MicheliniVV, SnellJMet al. Enhancing next-generation sequencing-guided cancer care through cognitive computing. Oncologist23(2), 179–185 (2018).
  • Barnes TA , AmirE, TempletonAJet al. Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat. Rev.56, 1–7 (2017).
  • Schirrmacher V . From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol.54(2), 407–419 (2019).
  • Haanen JBAG , CarbonnelF, RobertCet al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol.28(Suppl. 4), iv119–iv142 (2017).
  • André T , AmonkarM, NorquistJet al. Health-related quality of life (HRQoL) in patients (pts) treated with pembrolizumab (pembro) vs chemotherapy as first-line treatment in microsatellite instability-high (MSI-H) and/or deficient mismatch repair (dMMR) metastatic colorectal cancer (mCRC): ph. Ann. Oncol.31(Suppl. 4), S409–S461 (2020).
  • KEYTRUDA® [package insert]. Merck & Co., Inc, NJ, USA (2020). www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf
  • Marabelle A , LeDT, AsciertoPAet al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the Phase II KEYNOTE-158 study. J. Clin. Oncol.38(1), 1–10 (2020).
  • André T , ShiuK-K, KimTWet al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med.383(23), 2207–2218 (2020).
  • Marabelle A , FakihM, LopezJet al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, Phase 2 KEYNOTE-158 study. Lancet Oncol.21(10), 1353–1365 (2020).
  • Kummar S , Van TilburgCM, AlbertCMet al. Quality of life of adults and children with TRK fusion cancer treated with larotrectinib compared to the general population. J. Clin. Oncol.38(Suppl.), Abstract 3614 (2020).
  • Kummar S , BerlinJ, MascarenhasLet al. Quality of life in adult and pediatric patients with tropomyosin receptor kinase fusion cancer receiving larotrectinib. Curr. Probl. Cancer.doi:10.1016/j.currproblcancer.2021.100734 (2021) ( Epub ahead of print).
  • VITRAKVI Summary of Product Characteristics (SPC). www.ema.europa.eu/en/documents/product-information/vitrakvi-epar-product-information_en.pdf
  • VITRAKVI® [package insert]. Bayer Healthcare Pharmaceuticals Inc, NJ, USA (2019).
  • Drilon A , LaetschTW, KummarSet al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med.378(8), 731–739 (2018).
  • Hong DS , DuBoisSG, KummarSet al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three Phase 1/2 clinical trials. Lancet Oncol.21(4), 531–540 (2020).
  • Conley AP , DemetriGD, DoebeleRCet al. Patient-reported outcomes (PROs) from patients (Pts) with NTRK fusion-positive (NTRK-fp) solid tumours receiving entrectinib in the global Phase II STARTRK-2 study. Ann. Oncol.31(Suppl. 4), S462–S504 (2020).
  • ROZLYTREK® [package insert]. Genentech USA, Inc, CA, USA (2019). www.gene.com/download/pdf/rozlytrek_prescribing.pdf
  • Doebele RC , DrilonA, Paz-AresLet al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three Phase 1–2 trials. Lancet Oncol.21(2), 271–282 (2020).
  • Kummar S , MascarenhasL, GeoergerBet al. Patient-reported outcomes from two global multicenter clinical trials of children and adults with tropomyosin receptor kinase (TRK) fusion cancer receiving larotrectinib. J. Clin. Oncol.37(Suppl. 15), 6602 (2019).
  • Gray SW , KimB, ShollLet al. Medical oncologists’ experiences in using genomic testing for lung and colorectal cancer care. J. Oncol. Pract.13(3), e185–e196 (2017).
  • Ciardiello F , AdamsR, TaberneroJet al. Awareness, understanding, and adoption of precision medicine to deliver personalized treatment for patients with cancer: a multinational survey comparison of physicians and patients. Oncologist21(3), 292–300 (2016).
  • Lee MJ , HuenikenK, KuehneNet al. Cancer patient-reported preferences and knowledge for liquid biopsies and blood biomarkers at a comprehensive cancer center. Cancer Manag. Res.12, 1163–1173 (2020).
  • Persaud A , BonhamVL. The role of the health care provider in building trust between patients and precision medicine research programs. Am. J. Bioeth.18(4), 26–28 (2018).
  • Albrecht TA , TaylorAG. Physical activity in patients with advanced-stage cancer: a systematic review of the literature. Clin. J. Oncol. Nurs.16(3), 293–300 (2012).
  • Shilling V , StarkingsR, JenkinsV, FallowfieldL. The pervasive nature of uncertainty – a qualitative study of patients with advanced cancer and their informal caregivers. J. Cancer Surviv.11(5), 590–603 (2017).