1,688
Views
0
CrossRef citations to date
0
Altmetric
Review

The Critical Components for Effective Adaptive Radiotherapy in Patients with Unresectable Non-Small-Cell Lung Cancer: Who, When and How

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3551-3562 | Received 18 Mar 2022, Accepted 08 Sep 2022, Published online: 03 Oct 2022

References

  • Siegel RL , MillerKD, FuchsHE, JemalA. Cancer statistics, 2021. CA Cancer J. Clin.71(1), 7–33 (2021).
  • Molina JR , YangP, CassiviSD, SchildSE, AdjeiAA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc.83(5), 584–594 (2008).
  • Khatri A , GuJJ, McKernanCM, XuX, PendergastAM. ABL kinase inhibition sensitizes primary lung adenocarcinomas to chemotherapy by promoting tumor cell differentiation. Oncotarget10(20), 1874–1886 (2019).
  • Kong FM , ZhaoJ, WangJ, Faivre-FinnC. Radiation dose effect in locally advanced non-small cell lung cancer. J. Thorac. Dis.6(4), 336–347 (2014).
  • Yoon SM , ShaikhT, HallmanM. Therapeutic management options for stage III non-small-cell lung cancer. World J. Clin. Oncol.8(1), 1–20 (2017).
  • Antonia SJ , VillegasA, DanielDet al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med.377(20), 1919–1929 (2017).
  • Antonia SJ , VillegasA, DanielDet al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med.379(24), 2342–2350 (2018).
  • Jung HA , NohJM, SunJMet al. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-small-cell lung cancer. Lung Cancer146, 23–29 (2020).
  • Eichkorn T , BozorgmehrF, RegnerySet al. Consolidation immunotherapy after platinum-based chemoradiotherapy in patients with unresectable stage III non-small cell lung cancer – cross-sectional study of eligibility and administration rates. Front. Oncol.10, 586449 (2020).
  • Machtay M , BaeK, MovsasBet al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small-cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys.82(1), 425–434 (2012).
  • Bradley JD , PaulusR, KomakiRet al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol.16(2), 187–199 (2015).
  • Shaverdian N , OffinMD, RimnerAet al. Utilization and factors precluding the initiation of consolidative durvalumab in unresectable stage III non-small cell lung cancer. Radiother. Oncol.144, 101–104 (2020).
  • Wang D , BiN, ZhangTet al. Comparison of efficacy and safety between simultaneous integrated boost intensity-modulated radiotherapy and conventional intensity-modulated radiotherapy in locally advanced non-small-cell lung cancer: a retrospective study. Radiat. Oncol.14(1), 106 (2019).
  • Kwint M , ConijnS, SchaakeEet al. Intrathoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother. Oncol.113(3), 392–397 (2014).
  • Jan N , GuyC, ReshkoLB, HugoGD, WeissE. Lung and heart dose variability during radiation therapy of non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.98(3), 683–690 (2017).
  • Dawson LA , SharpeMB. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol.7(10), 848–858 (2006).
  • Yan D , ViciniF, WongJ, MartinezA. Adaptive radiation therapy. Phys. Med. Biol.42(1), 123–132 (1997).
  • Moller DS , HoltMI, AlberMet al. Adaptive radiotherapy for advanced lung cancer ensures target coverage and decreases lung dose. Radiother. Oncol.121(1), 32–38 (2016).
  • Ramella S , FioreM, SilipigniSet al. Local control and toxicity of adaptive radiotherapy using weekly CT imaging: results from the LARTIA trial in stage III NSCLC. J. Thorac. Oncol.12(7), 1122–1130 (2017).
  • Witt JS , RosenbergSA, BassettiMF. MRI-guided adaptive radiotherapy for liver tumours: visualising the future. Lancet Oncol.21(2), e74–e82 (2020).
  • Shelley CE , BarracloughLH, NelderCL, OtterSJ, StewartAJ. Adaptive radiotherapy in the management of cervical cancer: review of strategies and clinical implementation. Clin. Oncol. (R. Coll. Radiol.)33(9), 579–590 (2021).
  • Kong V , HansenVN, HafeezS. Image-guided adaptive radiotherapy for bladder cancer. Clin. Oncol. (R. Coll. Radiol.)33(6), 350–368 (2021).
  • Meng Y , LuoW, XuHet al. Adaptive intensity-modulated radiotherapy with simultaneous integrated boost for stage III non-small cell lung cancer: is a routine adaptation beneficial? Radiother. Oncol. 158, 118–124 (2021).
  • Berkovic P , PaelinckL, LievensYet al. Adaptive radiotherapy for locally advanced non-small-cell lung cancer, can we predict when and for whom? Acta Oncol. 54(9), 1438–1444 (2015).
  • Chen M , YangJ, LiaoZet al. Anatomic change over the course of treatment for non-small-cell lung cancer patients and its impact on intensity-modulated radiation therapy and passive-scattering proton therapy deliveries. Radiat. Oncol.15(1), 55 (2020).
  • Amugongo LM , Vasquez OsorioE, GreenAFet al. Early prediction of tumour-response to radiotherapy in NSCLC patients. Phys. Med. Biol. (2021).
  • Tariq I , ChenT, KirkbyNF, JenaR. Modelling and Bayesian adaptive prediction of individual patients’ tumour volume change during radiotherapy. Phys. Med. Biol.61(5), 2145–2161 (2016).
  • Duan C , ChaovalitwongseWA, BaiFet al. Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer. Phys. Med. Biol.65(20), 205007 (2020).
  • Sunassee ED , TanD, JiNet al. Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses. Int. J. Radiat. Biol.95(10), 1421–1426 (2019).
  • Jin JY , WangW, TenHaken RKet al. Use a survival model to correlate single-nucleotide polymorphisms of DNA repair genes with radiation dose–response in patients with non-small-cell lung cancer. Radiother. Oncol.117(1), 77–82 (2015).
  • Woodford C , YartsevS, DarAR, BaumanG, Van DykJ. Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int. J. Radiat. Oncol. Biol. Phys.69(4), 1316–1322 (2007).
  • Lim G , BezjakA, HigginsJet al. Tumor regression and positional changes in non-small-cell lung cancer during radical radiotherapy. J. Thorac. Oncol.6(3), 531–536 (2011).
  • Lee YH , KimYS, LeeHCet al. Tumour volume changes assessed with high-quality KVCT in lung cancer patients undergoing concurrent chemoradiotherapy. Br. J. Radiol.88(1052), 20150156 (2015).
  • Fox J , FordE, RedmondKet al. Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.74(2), 341–348 (2009).
  • Feng M , KongFM, GrossMet al. Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int. J. Radiat. Oncol. Biol. Phys.73(4), 1228–1234 (2009).
  • van Elmpt W , DeRuysscher D, vander Salm Aet al. The PET-boost randomised phase II dose-escalation trial in non-small-cell lung cancer. Radiother. Oncol.104(1), 67–71 (2012).
  • Kong FM , TenHaken RK, SchipperMet al. Effect of midtreatment PET/CT-Adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol.3(10), 1358–1365 (2017).
  • Finazzi T , Ronden-KianoushMI, SpoelstraFOBet al. Stereotactic ablative radiotherapy in patients with early-stage non-small cell lung cancer and co-existing interstitial lung disease. Acta Oncol.59(5), 569–573 (2020).
  • Fischer-Valuck BW , HenkeL, GreenOet al. Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system. Adv. Radiat. Oncol.2(3), 485–493 (2017).
  • Henke LE , OlsenJR, ContrerasJAet al. Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral thorax malignancies: results of a phase 1 trial. Adv. Radiat. Oncol.4(1), 201–209 (2019).
  • Finazzi T , PalaciosMA, SpoelstraFOBet al. Role of on-table plan adaptation in MR-guided ablative radiation therapy for central lung tumors. Int. J. Radiat. Oncol. Biol. Phys.104(4), 933–941 (2019).
  • Finazzi T , HaasbeekCJA, SpoelstraFOBet al. Clinical outcomes of stereotactic MR-guided adaptive radiation therapy for high-risk lung tumors. Int. J. Radiat. Oncol. Biol. Phys.107(2), 270–278 (2020).
  • Salem A , LittleRA, LatifAet al. Oxygen-enhanced MRI is feasible, repeatable, and detects radiotherapy-induced change in hypoxia in xenograft models and in patients with non-small-cell lung cancer. Clin. Cancer Res.25(13), 3818–3829 (2019).
  • Ramsey CR , LangenKM, KupelianPAet al. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int. J. Radiat. Oncol. Biol. Phys.64(4), 1237–1244 (2006).
  • Berkovic P , PaelinckL, GulybanAet al. Adaptive radiotherapy for locally advanced non-small cell lung cancer: dosimetric gain and treatment outcome prediction. Acta Oncol.56(11), 1656–1659 (2017).
  • Guckenberger M , RichterA, WilbertJ, FlentjeM, PartridgeM. Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int. J. Radiat. Oncol. Biol. Phys.81(4), e275–282 (2011).
  • van Diessen J , DeRuysscher D, SonkeJJet al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small-cell lung cancer (PET-boost trial). Radiother. Oncol.131, 166–173 (2019).
  • Palma DA , SenanS, TsujinoKet al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys.85(2), 444–450 (2013).
  • Aerts HJ , van BaardwijkAA, PetitSFet al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18fluorodeoxyglucose-PET-CT scan. Radiother. Oncol.91(3), 386–392 (2009).
  • Abramyuk A , TokalovS, ZophelKet al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small-cell lung cancer? Radiother. Oncol. 91(3), 399–404 (2009).
  • Sonke JJ , AznarM, RaschC. Adaptive radiotherapy for anatomical changes. Semin. Radiat. Oncol.29(3), 245–257 (2019).
  • Thorwarth D , LowDA. Technical challenges of real-time adaptive MR-guided radiotherapy. Front. Oncol.11, 634507 (2021).
  • Borman PTS , TijssenRHN, BosCet al. Characterization of imaging latency for real-time MRI-guided radiotherapy. Phys. Med. Biol.63(15), 155023 (2018).
  • Mahmood F , JohannesenHH, GeertsenP, HansenRH. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases. Phys. Med. Biol.62(8), 2990–3002 (2017).
  • Leibfarth S , WinterRM, LyngH, ZipsD, ThorwarthD. Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy. Clin. Transl. Radiat. Oncol.13, 29–37 (2018).
  • Britton KR , StarkschallG, LiuHet al. Consequences of anatomic changes and respiratory motion on radiation dose distributions in conformal radiotherapy for locally advanced non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.73(1), 94–102 (2009).
  • Schmidt ML , HoffmannL, KandiM, MollerDS, PoulsenPR. Dosimetric impact of respiratory motion, interfraction baseline shifts, and anatomical changes in radiotherapy of non-small cell lung cancer. Acta Oncol.52(7), 1490–1496 (2013).
  • Knap MM , HoffmannL, NordsmarkM, VestergaardA. Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients. Acta Oncol.49(7), 1077–1084 (2010).
  • Pantarotto JR , PietAH, VincentA, vanSornsen de Koste JR, SenanS. Motion analysis of 100 mediastinal lymph nodes: potential pitfalls in treatment planning and adaptive strategies. Int. J. Radiat. Oncol. Biol. Phys.74(4), 1092–1099 (2009).
  • Hoffmann L , HoltMI, KnapMM, KhalilAA, MollerDS. Anatomical landmarks accurately determine interfractional lymph node shifts during radiotherapy of lung cancer patients. Radiother. Oncol.116(1), 64–69 (2015).
  • Moller DS , KhalilAA, KnapMM, HoffmannL. Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis. Radiother. Oncol.110(3), 517–522 (2014).
  • Scott JG , SedorG, ScarboroughJAet al. Personalizing radiotherapy prescription dose using genomic markers of radiosensitivity and normal tissue toxicity in NSCLC. J. Thorac. Oncol.16(3), 428–438 (2021).
  • Guckenberger M , WilbertJ, RichterA, BaierK, FlentjeM. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys.79(3), 901–908 (2011).
  • Tvilum M , KhalilAA, MollerDS, HoffmannL, KnapMM. Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncol.54(9), 1430–1437 (2015).
  • Boejen A , VestergaardA, HoffmannLet al. A learning programme qualifying radiation therapists to manage daily online adaptive radiotherapy. Acta Oncol.54(9), 1697–1701 (2015).
  • Inal A , DumanE. Adaptive time management for patients who have non-small-cell lung cancer and underwent definitive radiotherapy: a dosimetric study of different gap duration scenarios. Int. J. Radiat. Biol.97(2), 219–227 (2021).
  • Fowler JF , ChappellR. Non-small-cell lung tumors repopulate rapidly during radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.46(2), 516–517 (2000).
  • Ribas A . Tumor immunotherapy directed at PD-1. N. Engl. J. Med.366(26), 2517–2519 (2012).
  • Tang C , LiaoZ, GomezDet al. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small-cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys.89(5), 1084–1091 (2014).
  • Cho O , OhYT, ChunM, NohOK, LeeHW. Radiation-related lymphopenia as a new prognostic factor in limited-stage small cell lung cancer. Tumour Biol.37(1), 971–978 (2016).
  • Ellsworth SG , YalamanchaliA, ZhangHet al. Comprehensive analysis of the kinetics of radiation-induced lymphocyte loss in patients treated with external beam radiation therapy. Radiat. Res.193(1), 73–81 (2020).
  • Shao H , ImH, CastroCMet al. New technologies for analysis of extracellular vesicles. Chem. Rev.118(4), 1917–1950 (2018).
  • Malla B , ZauggK, VassellaE, AebersoldDM, DalPra A. Exosomes and exosomal microRNAs in prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.98(5), 982–995 (2017).