79
Views
2
CrossRef citations to date
0
Altmetric
Review

Crosstalk Between Circrnas and the PI3K/AKT and/or MEK/ERK Signaling Pathways in Digestive Tract Malignancy Progression

, , , , &
Pages 4525-4538 | Received 25 Apr 2022, Accepted 29 Nov 2022, Published online: 09 Mar 2023

References

  • Dunnett-Kane V , NicolaP, BlackhallF, LindsayC. Mechanisms of resistance to KRAS(G12C) inhibitors.Cancers (Basel)13(1), (2021).
  • Koikawa K , KibeS, SuizuFet al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell 184(18), 4753–4771.e4727 (2021).
  • Martínez-Jiménez F , MuiñosF, SentísIet al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20(10), 555–572 (2020).
  • Dvinge H , GuenthoerJ, PorterPL, BradleyRK. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing.Genome Res.29(10), 1591–1604 (2019).
  • Chen S , HuangV, XuXet al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176(4), 831–843.e822 (2019).
  • Dvinge H , KimE, Abdel-WahabO, BradleyRK. RNA splicing factors as oncoproteins and tumour suppressors.Nat. Rev. Cancer16(7), 413–430 (2016).
  • Cooper TA , WanL, DreyfussG. RNA and disease.Cell136(4), 777–793 (2009).
  • Matera AG , WangZ. A day in the life of the spliceosome.Nat. Rev. Mol. Cell Biol.15(2), 108–121 (2014).
  • Shi Y . Mechanistic insights into precursor messenger RNA splicing by the spliceosome.Nat. Rev. Mol. Cell. Biol.18(11), 655–670 (2017).
  • Wickramasinghe VO , LaskeyRA. Control of mammalian gene expression by selective mRNA export.Nat. Rev. Mol. Cell. Biol.16(7), 431–442 (2015).
  • Goodall GJ , WickramasingheVO. RNA in cancer.Nat. Rev. Cancer21(1), 22–36 (2021).
  • Kristensen LS , AndersenMS, StagstedLVWet al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20(11), 675–691 (2019).
  • Sanger HL , KlotzG, RiesnerDet al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 73(11), 3852–3856 (1976).
  • Chen L . The expanding regulatory mechanisms and cellular functions of circular RNAs.Nat. Rev. Mol. Cell, Biol.21(8), 475–490 (2020).
  • Kristensen LS , AndersenMS, StagstedLVWet al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20(11), 675–691 (2019).
  • Szabo L , SalzmanJ. Detecting circular RNAs: bioinformatic and experimental challenges.Nat. Rev. Genet.17(11), 679–692 (2016).
  • Ashwal-Fluss R , MeyerM, PamudurtiNagarjuna Ret al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56(1), 55–66 (2014).
  • Wu W , JiP, ZhaoF. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes.Genome Biol.21(1), 101 (2020).
  • Ji P , WuW, ChenSet al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26(12), 3444–3460.e3445 (2019).
  • Khan MA , ReckmanYJ, AufieroSet al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119(9), 996–1003 (2016).
  • Zhang Z , YangT, XiaoJ. Circular RNAs: promising biomarkers for human diseases.EBioMedicine34, 267–274 (2018).
  • Guo JU , AgarwalV, GuoH, BartelDP. Expanded identification and characterization of mammalian circular RNAs.Genome Biol.15(7), 409 (2014).
  • Jeck WR , SharplessNE. Detecting and characterizing circular RNAs.Nat. Biotechnol.32(5), 453–461 (2014).
  • Tang X , RenH, GuoMet al. Review on circular RNAs and new insights into their roles in cancer. Comput. Struct. Biotechnol. J. 19, 910–928 (2021).
  • Yang Y , FanX, MaoMet al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27(5), 626–641 (2017).
  • Chen CY , SarnowP. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs.Science268(5209), 415–417 (1995).
  • Yang Y , FanX, MaoMet al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27(5), 626–641 (2017).
  • Jiang T , XiaY, LvJet al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol. Cancer 20(1), 66–66 (2021).
  • Li Y , ChenB, ZhaoJet al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv. Sci. 8(13), 2001701–2001701 (2021).
  • Wang PL , BaoY, YeeMCet al. Circular RNA is expressed across the eukaryotic tree of life. PLOS ONE 9(6), e90859 (2014).
  • Ivanov A , MemczakS, WylerEet al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10(2), 170–177 (2015).
  • Salzman J , ChenRE, OlsenMNet al. Cell-type specific features of circular RNA expression. PLOS Genet. 9(9), e1003777 (2013).
  • Rong Z , ShiS, TanZet al. Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Mol. Cancer 20(1), 106 (2021).
  • Liu Z , WangQ, WangXet al. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 6, 72 (2020).
  • Bose R , AinR. Regulation of transcription by circular RNAs.Adv. Exp. Med. Biol.1087, 81–94 (2018).
  • Sadoughi F , HallajzadehJ, AsemiZet al. Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair (Amst) 98, 103047 (2021).
  • Xu X , YuY, ZongKet al. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res. 38(1), 497 (2019).
  • Fattahi S , Amjadi-MohebF, TabaripourRet al. PI3K/AKT/mTOR signaling in gastric cancer: epigenetics and beyond. Life Sci. 262, 118513 (2020).
  • Lawrence MS , StojanovP, MermelCHet al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484), 495–501 (2014).
  • Cargnello M , RouxPP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.Microbiol. Mol. Biol. Rev.75(1), 50–83 (2011).
  • Koveitypour Z , PanahiF, VakilianMet al. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 9, 97 (2019).
  • Sanaei MJ , BagherySaghchy Khorasani A, Pourbagheri-SigaroodiAet al. The PI3K/Akt/mTOR axis in colorectal cancer: oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J. Cell. Physiol. (2021). doi:10.1002/jcp.30655.
  • Li X , WangJ, ZhangCet al. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J. Pathol. 246(2), 166–179 (2018).
  • Li C , ZhouH. Circular RNA hsa_circRNA 10.209 promotes the growth and metastasis of colorectal cancer through miR-761-mediated Ras and Rab interactor 1 signaling.Cancer Med.9(18), 6710–6725 (2020).
  • Li J , BaoS, WangL, WangR. CircZKSCAN1 suppresses hepatocellular carcinoma tumorigenesis by regulating miR-873-5p/downregulation of deleted in liver cancer 1.Dig. Dis. Sci.66(12), 4374–4383 (2021).
  • Li W , ZhouX, WuX, WeiJ, HuangZ. The role of circular RNA hsa_circ_0085616 in proliferation and migration of hepatocellular carcinoma cells.Cancer Manag. Res.11, 7369–7376 (2019).
  • Soma A , OnoderaA, SugaharaJet al. Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318(5849), 450–453 (2007).
  • Noto JJ , SchmidtCA, MateraAG. Engineering and expressing circular RNAs via tRNA splicing.RNA Biol14(8), 978–984 (2017).
  • Hsu MT , Coca-PradosM. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells.Nature280(5720), 339–340 (1979).
  • Memczak S , JensM, ElefsiniotiAet al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441), 333–338 (2013).
  • Huang C , LiangD, TatomerDC, WiluszJE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs.Genes Dev.32(9-10), 639–644 (2018).
  • Chen RX , ChenX, XiaLPet al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10(1), 4695 (2019).
  • Panda AC . Circular RNAs act as miRNA sponges.Adv. Exp. Med. Biol.1087, 67–79 (2018).
  • Yang Q , DuWW, WuNet al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24(9), 1609–1620 (2017).
  • Wang L , LongH, ZhengQet al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer 18(1), 119 (2019).
  • Lasda E , ParkerR. Circular RNAs: diversity of form and function.RNA20(12), 1829–1842 (2014).
  • Li X , YangL, ChenLL. The biogenesis, functions, and challenges of circular RNAs.Mol. Cell.71(3), 428–442 (2018).
  • Fabian MR , SonenbergN, FilipowiczW. Regulation of mRNA translation and stability by microRNAs.Annu. Rev. Biochem.79, 351–379 (2010).
  • Zhan W , LiaoX, ChenZet al. Circular RNA hsa_circRNA 10.809 promoted hepatocellular carcinoma development by regulating miR-377-3p/FGFR1/ERK axis. J. Cell. Physiol. 235(2), 1733–1745 (2020).
  • Lu Q , LiuT, FengHet al. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18(1), 111 (2019).
  • Zhang X , WangS, WangHet al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 18(1), 20 (2019).
  • Denzler R , AgarwalV, StefanoJet al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54(5), 766–776 (2014).
  • Thomson DW , DingerME. Endogenous microRNA sponges: evidence and controversy.Nat. Rev. Genet.17(5), 272–283 (2016).
  • Mahmoudi E , FitzsimmonsC, GeaghanMPet al. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology 44(6), 1043–1054 (2019).
  • Salmena L , PolisenoL, TayYet al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3), 353–358 (2011).
  • Poliseno L , SalmenaL, ZhangJet al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301), 1033–1038 (2010).
  • Hsiao KY , LinYC, GuptaSKet al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77(9), 2339–2350 (2017).
  • Hu ZQ , ZhouSL, LiJet al. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology 72(3), 906–922 (2020).
  • Cui W , DaiJ, MaJ, GuH. circCDYL/microRNA-105-5p participates in modulating growth and migration of colon cancer cells.Gen. Physiol. Biophys.38(6), 485–495 (2019).
  • Wei Y , ChenX, LiangCet al. A noncoding regulatory RNAs network driven by circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology 71(1), 130–147 (2020).
  • Kristensen LS , JakobsenT, HagerH, KjemsJ. The emerging roles of circRNAs in cancer and oncology.Nat. Rev. Clin. Oncol. (2021). doi:10.1038/s41571-021-00585-y.
  • Abdelmohsen K , PandaAC, MunkRet al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14(3), 361–369 (2017).
  • Yang F , FangE, MeiHet al. Cis-acting circ-CTNNB1 promotes β-catenin signaling and cancer progression via DDX3-mediated transactivation of YY1. Cancer Res. 79(3), 557–571 (2019).
  • Fang L , DuWW, AwanFMet al. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 459, 216–226 (2019).
  • Chen N , ZhaoG, YanXet al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19(1), 218 (2018).
  • Wang XH , LiJ. CircAGFG1 aggravates the progression of cervical cancer by downregulating p53.Eur. Rev. Med. Pharmacol. Sci.24(4), 1704–1711 (2020).
  • Zheng S , QianZ, JiangFet al. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am. J. Transl. Res. 11(7), 4126–4138 (2019).
  • Conn SJ , PillmanKA, ToubiaJet al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6), 1125–1134 (2015).
  • Schuller AP , GreenR. Roadblocks and resolutions in eukaryotic translation.Nat. Rev. Mol. Cell Biol.19(8), 526–541 (2018).
  • Meyer KD , PatilDP, ZhouJet al. 5′ UTR m(6)A promotes cap-independent translation. Cell 163(4), 999–1010 (2015).
  • Zhou J , WanJ, GaoXet al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526(7574), 591–594 (2015).
  • Yang Y , WangZ. IRES-mediated cap-independent translation, a path leading to hidden proteome.J. Mol. Cell Biol.11(10), 911–919 (2019).
  • Godet AC , DavidF, HantelysFet al. IRES trans-acting factors, key actors of the stress response. Int. J. Mol. Sci. 20(4), (2019).
  • Abe N , HiroshimaM, MaruyamaHet al. Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem. Int. Ed. Engl. 52(27), 7004–7008 (2013).
  • Huang W , LingY, ZhangSet al. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucl. Acids Res. 49(D1), D236–d242 (2021).
  • Li H , XieM, WangYet al. riboCIRC: a comprehensive database of translatable circRNAs. Genome Biol. 22(1), 79 (2021).
  • Meyer KD , JaffreySR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control.Nat. Rev. Mol. Cell. Biol.15(5), 313–326 (2014).
  • Li Y , ChenB, ZhaoJet al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv. Sci. 8(13), 2001701 (2021).
  • Xia X , LiX, LiFet al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer 18(1), 131 (2019).
  • Zhang M , HuangN, YangXet al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37(13), 1805–1814 (2018).
  • Xing C , YeH, WangWet al. Circular RNA ADAM9 facilitates the malignant behaviours of pancreatic cancer by sponging miR-217 and upregulating PRSS3 expression. Artif. Cells Nanomed. Biotechnol. 47(1), 3920–3928 (2019).
  • Guo X , ZhouQ, SuDet al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol. Cancer 19(1), 83 (2020).
  • Zhang T , LiM, LuH, PengT. Up-regulation of circEIF6 contributes to pancreatic cancer development through targeting miR-557/SLC7A11/PI3K/AKT signaling.Cancer Manag. Res.13, 247–258 (2021).
  • Kong Y , LiY, LuoYet al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol. Cancer 19(1), 82 (2020).
  • Li Z , YanfangW, LiJet al. Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Lett. 432, 237–250 (2018).
  • Lin Q , LingYB, ChenJWet al. Circular RNA circCDK13 suppresses cell proliferation, migration and invasion by modulating the JAK/STAT and PI3K/AKT pathways in liver cancer. Int. J. Oncol. 53(1), 246–256 (2018).
  • Fu HW , LinX, ZhuYXet al. Circ-IGF1R has pro-proliferative and anti-apoptotic effects in HCC by activating the PI3K/AKT pathway. Gene 716, 144031 (2019).
  • Yu Q , DaiJ, ShuM. Circular RNA-0072309 has antitumor influences in Hep3B cell line by targeting microRNA-665.Biofactors (2020). doi:10.1002/biof.1618 (epub ahead of print).
  • Zheng H , ChenT, LiCet al. A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag. Res. 11, 443–454 (2019).
  • Sun XH , WangYT, LiGF, ZhangN, FanL. Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma.Cancer Cell. Int.20, 226 (2020).
  • Tan Y , DuB, ZhanYet al. Antitumor effects of circ-EPHB4 in hepatocellular carcinoma via inhibition of HIF-1α. Mol. Carcinog. 58(6), 875–886 (2019).
  • Zhang B , LiF, ZhuZet al. CircRNA CDR1as/miR-1287/Raf1 axis modulates hepatocellular carcinoma progression through MEK/ERK pathway. Cancer Manag. Res. 12, 8951–8964 (2020).
  • Song H , XuY, XuTet al. CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p. Biomed. Pharmacother. 126, 109941 (2020).
  • Peng YK , PuK, SuHXet al. Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 24(3), 1142–1151 (2020).
  • Li J , YangY, XuD, CaoL. hsa_circ_0023409 accelerates gastric cancer cell growth and metastasis through regulating the IRS4/PI3K/AKT pathway.Cell Transplant.30, 963689720975390 (2021).
  • Pan H , LiT, JiangYet al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 119(1), 440–446 (2018).
  • Sun B , SunH, WangQet al. Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down-regulation of miR-145. J. Clin. Lab. Anal. 34(6), e23215–e23215 (2020).
  • Wang X , ZhangY, LiW, LiuX. Knockdown of cir_RNA PVT1 elevates gastric cancer cisplatin sensitivity via sponging miR-152-3p.J. Surg. Res.261, 185–195 (2021).
  • Cheng Z , LiuG, HuangC, ZhaoX. Upregulation of circRNA 10.395 sponges miR-142-3p to inhibit gastric cancer progression by targeting the PI3K/AKT axis.Oncol. Lett.21(5), 419–419 (2021).
  • Zhang J , HouL, LiangRet al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol. Cancer 18(1), 80 (2019).
  • Sun H , WangQ, YuanGet al. Hsa_circ_0001649 restrains gastric carcinoma growth and metastasis by downregulation of miR-20a. J. Clin. Lab. Anal. 34(6), e23235 (2020).
  • Wang J , LuoJ, LiuG, LiX. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis.Biochem. Biophys. Res. Commun.527(2), 503–510 (2020).
  • Tu F-L , GuoX-Q, WuH-Xet al. Circ-0001313/miRNA-510-5p/AKT2 axis promotes the development and progression of colon cancer. Am. J. Transl. Res. 12(1), 281–291 (2020).
  • Shi Y , FangN, LiYet al. Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111(8), 2824–2836 (2020).
  • He Y , MingyanE, WangCet al. CircVRK1 regulates tumor progression and radioresistance in esophageal squamous cell carcinoma by regulating miR-624-3p/PTEN/PI3K/AKT signaling pathway. Int. J. Biol. Macromol. 125, 116–123 (2019).
  • Chen Z , YaoN, GuHet al. Circular RNA_LARP4 sponges miR-1323 and hampers progression of esophageal squamous cell carcinoma through modulating PTEN/PI3K/AKT pathway. Digest. Dis. Sci. 65(8), 2272–2283 (2020).
  • Zheng Q , BaoC, GuoWet al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).
  • He AT , LiuJ, LiF, YangBB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges.Signal Transduct. Target Ther.6(1), 185 (2021).
  • Zhang Y , NguyenTM, ZhangXOet al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22(1), 41 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.