63
Views
1
CrossRef citations to date
0
Altmetric
Meta-Analysis

Evidence from a meta-analysis for the prognostic and clinicopathological importance of DKC1 in malignancies

ORCID Icon, ORCID Icon, &
Pages 473-484 | Received 12 Nov 2022, Accepted 06 Feb 2023, Published online: 06 Mar 2023

References

  • Siegel RL , MillerKD, JemalA. Cancer statistics, 2018. CA Cancer J. Clin.68(1), 7–30 (2018).
  • Sung H , FerlayJ, SiegelRLet al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Desantis CE , LinCC, MariottoABet al. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin.64(4), 252–271 (2014).
  • Heiss NS , KnightSW, VulliamyTJet al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet.19(1), 32–38 (1998).
  • Knight S , VulliamyT, CopplestoneA, GluckmanE, MasonP, DokalI. Dyskeratosis Congenita (DC) Registry: identification of new features of DC. Br. J. Haematol.103(4), 990–996 (1998).
  • Chang JT , ChenYL, YangHT, ChenCY, ChengAJ. Differential regulation of telomerase activity by six telomerase subunits. Eur. J. Biochem.269(14), 3442–3450 (2002).
  • Cohen SB , GrahamME, LovreczGO, BacheN, RobinsonPJ, ReddelRR. Protein composition of catalytically active human telomerase from immortal cells. Science315(5820), 1850–1853 (2007).
  • Connor JM , GathererD, GrayFC, PirritLA, AffaraNA. Assignment of the gene for dyskeratosis congenita to Xq28. Hum. Genet.72(4), 348–351 (1986).
  • Knight SW , VulliamyT, ForniGL, OscierD, MasonPJ, DokalI. Fine mapping of the dyskeratosis congenita locus in Xq28. J. Med. Genet.33(12), 993–995 (1996).
  • Lin J , KaurP, CountrymanP, OpreskoPL, WangH. Unraveling secrets of telomeres: one molecule at a time. DNA Repair20, 142–153 (2014).
  • Counter CM , AvilionAA, LefeuvreCEet al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J.11(5), 1921–1929 (1992).
  • De Lange T , ShiueL, MyersRMet al. Structure and variability of human chromosome ends. Mol. Cell. Biol.10(2), 518–527 (1990).
  • Harley CB , FutcherAB, GreiderCW. Telomeres shorten during ageing of human fibroblasts. Nature345(6274), 458–460 (1990).
  • Hastie ND , DempsterM, DunlopMG, ThompsonAM, GreenDK, AllshireRC. Telomere reduction in human colorectal carcinoma and with ageing. Nature346(6287), 866–868 (1990).
  • Kim NW , HarleyCB, ProwseKRet al. Response: telomeres, telomerase, and cancer. Science268(5214), 1116–1117 (1995).
  • Lindsey J , McGillNI, LindseyLA, GreenDK, CookeHJ. In vivo loss of telomeric repeats with age in humans. Mutat. Res.256(1), 45–48 (1991).
  • Shay JW , WrightWE. The reactivation of telomerase activity in cancer progression. Trends Genet.12(4), 129–131 (1996).
  • Wright WE , Pereira-SmithOM, ShayJW. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol. Cell. Biol.9(7), 3088–3092 (1989).
  • Kim NW , PiatyszekMA, ProwseKRet al. Specific association of human telomerase activity with immortal cells and cancer. Science266(5193), 2011–2015 (1994).
  • Shay JW , BacchettiS. A survey of telomerase activity in human cancer. Eur. J. Cancer33(5), 787–791 (1997).
  • Soung YH , LeeJW, KimSYet al. Absence of DKC1 exon 3 mutation in common human cancers. Acta Oncol.45(3), 342–343 (2006).
  • Stockert JA , GuptaA, HerzogB, YadavSS, TewariAK, YadavKK. Predictive value of pseudouridine in prostate cancer. Am. J. Clin. Exp. Urol.7(4), 262–272 (2019).
  • Stockert JA , WeilR, YadavKK, KyprianouN, TewariAK. Pseudouridine as a novel biomarker in prostate cancer. Urol. Oncol.39(1), 63–71 (2021).
  • Piva R , PellegrinoE, MattioliMet al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J. Clin. Invest.116(12), 3171–3182 (2006).
  • Katunaric M , ZamoloG. Modulating telomerase activity in tumor patients by targeting dyskerin binding site for hTR. Med. Hypotheses79(3), 319–320 (2012).
  • Hou P , ShiP, JiangTet al. DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer. Br. J. Cancer122(5), 668–679 (2020).
  • Li L , CaoY, FanY, LiR. Gene signature to predict prognostic survival of hepatocellular carcinoma. Open Med.17(1), 135–150 (2022).
  • Liu B , ZhangJ, HuangC, LiuH. Dyskerin overexpression in human hepatocellular carcinoma is associated with advanced clinical stage and poor patient prognosis. PLOS ONE7(8), e43147 (2012).
  • Elsharawy KA , MohammedOJ, AleskandaranyMAet al. The nucleolar-related protein dyskerin pseudouridine synthase 1 (DKC1) predicts poor prognosis in breast cancer. Br. J. Cancer123(10), 1543–1552 (2020).
  • O’brien R , TranSL, MaritzMFet al. MYC-driven neuroblastomas are addicted to a telomerase-independent function of dyskerin. Cancer Res.76(12), 3604–3617 (2016).
  • Westermann F , HenrichKO, WeiJSet al. High Skp2 expression characterizes high-risk neuroblastomas independent of MYCN status. Clin. Cancer Res.13(16), 4695–4703 (2007).
  • Stang A . Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol.25(9), 603–605 (2010).
  • Parmar MK , TorriV, StewartL. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med.17(24), 2815–2834 (1998).
  • Tierney JF , StewartLA, GhersiD, BurdettS, SydesMR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials8, 16 (2007).
  • Higgins JP , ThompsonSG, DeeksJJ, AltmanDG. Measuring inconsistency in meta-analyses. BMJ327(7414), 557–560 (2003).
  • Dersimonian R , LairdN. Meta-analysis in clinical trials. Control. Clin. Trials7(3), 177–188 (1986).
  • Begg CB , MazumdarM. Operating characteristics of a rank correlation test for publication bias. Biometrics50(4), 1088–1101 (1994).
  • Egger M , DaveySmith G, SchneiderM, MinderC. Bias in meta-analysis detected by a simple, graphical test. BMJ315(7109), 629–634 (1997).
  • Alnafakh R , SaretzkiG, MidgleyAet al. Aberrant dyskerin expression is related to proliferation and poor survival in endometrial cancer. Cancers (Basel)13(2), 273 (2021).
  • Kan G , WangZ, ShengCet al. Dual inhibition of DKC1 and MEK1/2 synergistically restrains the growth of colorectal cancer cells. Adv. Sci.8(10), 2004344 (2021).
  • Kan G , WangZ, ShengC, YaoC, MaoY, ChenS. Inhibition of DKC1 induces telomere-related senescence and apoptosis in lung adenocarcinoma. J. Transl. Med.19(1), 161 (2021).
  • Montanaro L , BrigottiM, ClohessyJet al. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol.210(1), 10–18 (2006).
  • Vasuri F , RocchiL, DegiovanniAet al. Dyskerin expression in human fetal, adult and neoplastic intrahepatic bile ducts: correlations with cholangiocarcinoma aggressiveness. Histopathology66(2), 244–251 (2015).
  • Zhang M , PanY, JiangRet al. DKC1 serves as a potential prognostic biomarker for human clear cell renal cell carcinoma and promotes its proliferation, migration and invasion via the NF-κB pathway. Oncol. Rep.40(2), 968–978 (2018).
  • Montanaro L , TreréD, DerenziniM. Nucleolus, ribosomes, and cancer. Am. J. Pathol.173(2), 301–310 (2008).
  • Montanaro L , TreréD, DerenziniM. Changes in ribosome biogenesis may induce cancer by down-regulating the cell tumor suppressor potential. Biochim. Biophys. Acta1825(1), 101–110 (2012).
  • Montanaro L , CalienniM, BertoniSet al. Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res.70(11), 4767–4777 (2010).
  • Sieron P , HaderC, HatinaJet al. DKC1 overexpression associated with prostate cancer progression. Br. J. Cancer101(8), 1410–1416 (2009).
  • Montanaro L . Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer. J. Pathol.222(4), 345–349 (2010).
  • D’adda Di Fagagna F , ReaperPM, Clay-FarraceLet al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426(6963), 194–198 (2003).
  • Fernandez-Garcia I , MarcosT, Muñoz-BarrutiaAet al. Multiscale in situ analysis of the role of dyskerin in lung cancer cells. Integr. Biol. (Camb.)5(2), 402–413 (2013).
  • Yang Z , WangZ, DuanY. LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncol. Lett.20(3), 2183–2190 (2020).
  • Liu SY , ZhaoZY, QiaoZ, LiSM, ZhangWN. LncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion and apoptosis in NSCLC cells via the VEGF/AKT/Bcl2/caspase9 pathway. Cell Transplant.30, 963689720986071 (2021).
  • Nelson ND , BertuchAA. Dyskeratosis congenita as a disorder of telomere maintenance. Mut. Res.730(1-2), 43–51 (2012).
  • Bessler M , WilsonDB, MasonPJ. Dyskeratosis congenita. FEBS Lett.584(17), 3831–3838 (2010).
  • Walne AJ , DokalI. Advances in the understanding of dyskeratosis congenita. Br. J. Haematol.145(2), 164–172 (2009).
  • Artandi SE , DepinhoRA. Telomeres and telomerase in cancer. Carcinogenesis31(1), 9–18 (2010).
  • Rocchi L , BarbosaAJ, OnofrilloC, DelRio A, MontanaroL. Inhibition of human dyskerin as a new approach to target ribosome biogenesis. PLOS ONE9(7), e101971 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.