175
Views
0
CrossRef citations to date
0
Altmetric
Review

siRNA-Based Approaches for Castration-Resistant Prostate Cancer Therapy Targeting the Androgen Receptor Signaling Pathway

, ORCID Icon, , ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 2055-2073 | Received 20 Mar 2023, Accepted 13 Sep 2023, Published online: 12 Oct 2023

References

  • Wang L , LuB, HeM, WangY, WangZ, DuL. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front. Public Health10, 811044 (2022).
  • Sung H , FerlayJ, SiegelRLet al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Culp MB , SoerjomataramI, EfstathiouJA, BrayF, JemalA. Recent global patterns in prostate cancer incidence and mortality rates. Eur. Urol.77(1), 38–52 (2019).
  • Aurilio G , CimadamoreA, MazzucchelliRet al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells9(2653), 1–14 (2020).
  • Kamoto T . Evaluation and diagnosis for castration resistant prostate cancer: CRPC. Nihon Rinsho72(12), 2103–2107 (2014).
  • Scher HI , HalabiS, TannockIet al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol.26(7), 1148–1159 (2008).
  • Morote J , AguilarA, PlanasJ. Definition of castrate resistant prostate cancer: new insights. Biomedicines10, 689 (2022).
  • Shan X , LuD, ChenY. Efficacy and safety of androgen-deprivation therapy combined with docetaxel plus prednisone in high-burden metastatic hormone-sensitive prostate cancer. Cancer Manag. Res.12, 4369–4377 (2020).
  • Pernigoni N , ZagatoE, CalcinottoAet al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. J. Urol.208(1), 205–206 (2022).
  • Kong P , ZhangL, ZhangZet al. Emerging proteins in CRPC: functional roles and clinical implications. Front. Oncol.12, 873876 (2022).
  • Huang J , LinB, LiB, CuvillierO. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective. Front. Oncol.12, 865350 (2022).
  • Lokeshwar SD , KlaassenZ, SaadF. Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat. Rev. Urol.18(7), 433–442 (2021).
  • Kristen AV , Ajroud-DrissS, ConceiçãoI, GorevicP, KyriakidesT, ObiciL. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag.9(1), 5–23 (2019).
  • Scott LJ . Givosiran: first approval. Drugs80(3), 335–339 (2020).
  • Scott LJ , KeamSJ. Lumasiran: first approval. Drugs81(2), 277–282 (2021).
  • Padda IS , MahtaniAU, ParmarM. Small Interfering RNA (siRNA) Based Therapy.StatPearls Publishing, Treasure Island (FL) (2023).
  • Ray KK , WrightRS, KallendDet al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med.382(16), 1507–1519 (2020).
  • Mullard A . 2022 FDA approvals. Nat. Rev. Drug Discov.22(2), 83–88 (2023).
  • Mullard A . FDA approves fifth RNAi drug – Alnylam’s next-gen hATTR treatment. Nat. Rev. Drug Discov.21(8), 548–549 (2022).
  • Yamamoto Y , LinPJC, BeraldiEet al. siRNA lipid nanoparticle potently silences clusterin and delays progression when combined with androgen receptor cotargeting in enzalutamide-resistant prostate cancer. Clin. Cancer Res.21(21), 4845–4855 (2015).
  • Albala DM . Imaging and treatment recommendations in patients with castrate-resistant prostate cancer. Rev. Urol.19(3), 200–202 (2017).
  • Vellky JE , RickeWA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia.22(11), 566–575 (2020).
  • Massengill JC , SunL, MoulJWet al. Pretreatment total testosterone level predicts pathological stage in patients with localized prostate cancer treated with radical prostatectomy. J. Urol.169(5), 1670–1675 (2003).
  • Schatzl G , MadersbacherS, ThurridlTet al. High-grade prostate cancer is associated with low serum testosterone levels. Prostate47(1), 52–58 (2001).
  • Intasqui P , BertollaRP, SadiMV. Prostate cancer proteomics: clinically useful protein biomarkers and future perspectives. Expert Rev. Proteomics15(1), 65–79 (2018).
  • Liu X , PapukashviliD, WangZet al. Potential utility of miRNAs for liquid biopsy in breast cancer. Front. Oncol.12, 940314 (2022).
  • Iglesias-Gato D , WikströmP, TyanovaSet al. The proteome of primary prostate cancer. Eur. Urol.69(5), 942–952 (2016).
  • Trujillo B , WuA, WetterskogD, AttardG. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br. J. Cancer127(8), 1394–1402 (2022).
  • PDQ Adult Treatment Editorial Board . Prostate Cancer Treatment (PDQ®): Patient Version.National Cancer Institute, Bethesda, MD (2023).
  • Morgan SC , HoffmanK, LoblawDAet al. Hypofractionated radiation therapy for localized prostate cancer: executive summary of an ASTRO, ASCO and AUA evidence-based guideline. J. Urol.201(3), 528–534 (2019).
  • Posdzich P , DarrC, HilserTet al. Metastatic prostate cancer – a review of current treatment options and promising new approaches. Cancers (Basel)15(2), 461 (2023).
  • Papukashvili D , RcheulishviliN, LiuCet al. Perspectives on miRNAs targeting DKK1 for developing hair regeneration therapy. Cells10(11), 2957 (2021).
  • Daniels DL , WeisWI. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol.12(4), 364–371 (2005).
  • Mehta S , HingoleS, ChaudharyV. The emerging mechanisms of Wnt secretion and signaling in development. Front. Cell Dev. Biol.9, 714746 (2021).
  • Kimelman D , XuW. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene25(57), 7482–7491 (2006).
  • Zhang Y , WangX. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol.13, 165 (2020).
  • Kypta RM , WaxmanJ. Wnt/β 2-catenin signalling in prostate cancer. Nat. Rev. Urol.9(8), 418–428 (2012).
  • Murillo-Garzón V , KyptaR. Wnt signalling in prostate cancer. Nat. Rev. Urol.14(11), 683–69 (2017).
  • Domingo-Domenech J , MelladoB, FerrerBet al. Activation of nuclear factor-κB in human prostate carcinogenesis and association to biochemical relapse. Br. J. Cancer93(11), 1285–1294 (2005).
  • Staal J , BeyaertR. Inflammation and NF-κB signaling in prostate cancer: mechanisms and clinical implications. Cells7(9), 122 (2018).
  • Jin R , YamashitaH, YuXet al. Inhibition of NF-kappa B signaling restores responsiveness of castrate resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor variants expression. Oncogene34(28), 3700–3710 (2015).
  • He Y , XuW, XiaoYT, HuangH, GuD, RenS. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct. Target. Ther.7(1), 198 (2022).
  • Hoang DT , IczkowskiKA, KilariD, SeeW, NevalainenMT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: opportunities for therapeutic targeting from multiple angles. Oncotarget8(2), 3724–3745 (2017).
  • Ramalingam S , RamamurthyVP, NjarVCO. Dissecting major signaling pathways in prostate cancer development and progression: mechanisms and novel therapeutic targets. J. Steroid Biochem. Mol. Biol.166, 16–27 (2017).
  • Shorning BY , DassMS, SmalleyMJ, PearsonHB. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci.21(12), 4507 (2020).
  • Molina JR , AdjeiAA. The Ras/Raf/MAPK pathway. J. Thorac. Oncol.1(1), 7–9 (2006).
  • Schweizer MT , YuEY. Persistent androgen receptor addiction in castration-resistant prostate cancer. J. Hematol. Oncol.8(1), 128 (2015).
  • El-amm J , Aragon-chingJB. The current landscape of treatment in non-metastatic castration-resistant prostate cancer. Clin. Med. Insights Oncol.13, 1179554919833927 (2019).
  • Hamid ARAH , Luna-VelezMV, DudekAM, SchaafsmaE, SedelaarJPM, SchalkenJA. Molecular phenotyping of AR signaling for predicting targeted therapy in castration resistant prostate cancer patient and tissue selection. Front. Oncol.11, 721659 (2021).
  • Chang C , LeeSO, WangRS, YehS, ChangTM. Androgen receptor (AR) physiological roles in male and female reproductive systems: lessons learned from AR-knockout mice lacking AR in selective cells. Biol. Reprod.89(1), 21 (2013).
  • Fujita K , NonomuraN. Role of androgen receptor in prostate cancer: a review. World J. Mens Health.37(3), 288–295 (2019).
  • Eder IE , CuligZ, PutzT, Nessler-MenardiC, BartschG, KlockerH. Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur. Urol.40(3), 241–251 (2001).
  • Tan ME , LiJ, XuHE, MelcherK, YongEL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin.36(1), 3–23 (2015).
  • Schalken J , FitzpatrickJM. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int.117(2), 215–225 (2016).
  • Robinson JLL , HickeyTE, WarrenAYet al. Elevated levels of FOXA1 facilitate androgen receptor chromatin binding resulting in a CRPC-like phenotype. Oncogene33(50), 5666–5674 (2014).
  • Coutinho I , DayTK, TilleyWD, SelthLA. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr. Relat. Cancer.23(12), T179–T197 (2016).
  • Grasso CS , WuY, RobinsonDRet al. The mutational landscape of lethal castrate resistant prostate cancer. Nature487(7406), 239–243 (2013).
  • Podolak J , EilersK, NewbyTet al. Androgen receptor amplification is concordant between circulating tumor cells and biopsies from men undergoing treatment for metastatic castration resistant prostate cancer. Oncotarget8(42), 71447–71455 (2017).
  • Azad AA , VolikSV, WyattAWet al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res.21(10), 2315–2324 (2015).
  • Jiang Y , PalmaJF, AgusDB, WangY, GrossME. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem.56(9), 1492–1495 (2010).
  • Kwack MH , SungYK, ChungEJet al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Invest. Dermatol.128(2), 262–269 (2008).
  • Premanand A , RajkumariBR. Androgen modulation of Wnt/β-catenin signaling in androgenetic alopecia. Arch. Dermatol. Res.310, 391–399 (2018).
  • Yassa M , SaliouM, derycke Yet al. Male pattern baldness and the risk of prostate cancer. Ann. Oncol.22(8), 1824–1827 (2011).
  • Muller DC , GilesGG, SinclairR, HopperJL, EnglishDR, SeveriG. Age-dependent associations between androgenetic alopecia and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev.22(2), 209–215 (2013).
  • He H , XieB, XieL. Male pattern baldness and incidence of prostate cancer: a systematic review and meta-analysis. Medicine97(28), e11379 (2017).
  • Wright JL , PageST, LinDW, StanfordJL. Male pattern baldness and prostate cancer risk in a population-based case-control study. Cancer Epidemiol.34(2), 131–135 (2010).
  • Khan S , CaldwellJ, WilsonKM, Gonzalez-felicianoAG, GerkeTA, MarktSC. Baldness and risk of prostate cancer in the Health Professionals Follow-Up Study. Cancer Epidemiol. Biomarkers Prev.29(6), 1229–1236 (2020).
  • Flores-Morales A , BergmannTB, LavalleeCet al. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res.15(2), 595–608 (2019).
  • Parsons JK , CarterHB, PlatzEA, WrightEJ, LandisP, MetterEJ. Serum testosterone and the risk of prostate cancer: potential implications for testosterone therapy. Cancer Epidemiol. Biomarkers Prev.14(9), 2257–2260 (2005).
  • Pierorazio PM , FerrucciL, KettermannA, LongoDL, MetterEJ, CarterHB. Serum testosterone is associated with aggressive prostate cancer in older men: results from the Baltimore Longitudinal Study of Aging. BJU Int.105(6), 824–829 (2010).
  • Stattin P , LummeS, TenkanenLet al. High levels of circulating testosterone are not associated with increased prostate cancer risk: a pooled prospective study. Int. J. Cancer108(3), 418–424 (2004).
  • Gui B , GuiF, TakaiTet al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc. Natl Acad. Sci. USA116(29), 14573–14582 (2019).
  • Tatarov O , MitchellTJ, SeywrightM, LeungHY, BruntonVG, EdwardsJ. Src family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res.15(10), 3540–3549 (2009).
  • Peacock JW , TakeuchiA, HayashiNet al. SEMA 3C drives cancer growth by transactivating multiple receptor tyrosine kinases via plexin B1. EMBO Mol. Med.10(2), 219–238 (2018).
  • Lee CCW , MunugantiRSN, PeacockJWet al. Targeting semaphorin 3C in prostate cancer with small molecules. J. Endocr. Soc.2(12), 1381–1394 (2018).
  • Xu K , ShimelisH, LinnDEet al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell15(4), 270–282 (2009).
  • Welti J , RodriguesDN, SharpAet al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castration-resistant prostate cancer. Eur. Urol.70(4), 599–608 (2016).
  • Sugiura M , SatoH, OkabeAet al. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl. Oncol.14(1), 100915 (2021).
  • Xu D , ZhanY, QiYet al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res.75(17), 3663–3671 (2015).
  • Stuopelyte K , SabaliauskaiteR, BakaviciusAet al. Analysis of AR-FL and AR-V1 in whole blood of patients with castration resistant prostate cancer as a tool for predicting response to abiraterone acetate. J. Urol.204(1), 71–78 (2020).
  • Li Q , WangZ, YiJet al. Clinicopathological characteristics of androgen receptor splicing variant 7 (AR-V7) expression in patients with castration resistant prostate cancer: a systematic review and meta-analysis. Transl. Oncol.14(9), 101145 (2021).
  • Sharp A , ColemanI, YuanWet al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J. Clin. Invest.129(1), 192–208 (2019).
  • Kanayama M , LuC, LuoJ, AntonarakisES. AR splicing variants and resistance to AR targeting agents. Cancers (Basel)13(11), 2563 (2021).
  • Heinlein CA , ChangC. Androgen receptor (AR) coregulators: an overview. Endocr. Rev.23(2), 175–200 (2002).
  • Watson PA , AroraVK, SawyersCL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer15(12), 701–711 (2015).
  • Hu R , DunnTA, WeiSet al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer. Cancer Res.69(1), 16–22 (2009).
  • Jiang N , Hjorth-JensenK, HekmatOet al. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene34(21), 2764–2776 (2015).
  • Lee HC , OuCH, HuangYCet al. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene40(13), 2407–2421 (2021).
  • Ishizuya Y , UemuraM, NarumiRet al. The role of actinin-4 (ACTN4) in exosomes as a potential novel therapeutic target in castration-resistant prostate cancer. Biochem. Biophys. Res. Commun.523(3), 588–594 (2020).
  • Park S , KangM, KimS, AnH, GettemansJ, KoJ. α-Actinin-4 promotes the progression of prostate cancer through the Akt/GSK-3β/β-catenin signaling pathway. Front. Cell Dev. Biol.8, 588544 (2020).
  • Ingersoll MA , ChouYW, LinJSet al. p66Shc regulates migration of castration-resistant prostate cancer cells. Cell. Signal.46, 1–14 (2018).
  • Miller DR , IngersollMA, ChatterjeeAet al. p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance. Free Radic. Biol. Med.139, 24–34 (2019).
  • Ai J , JinT, YangLet al. Vinculin and filamin-C are two potential prognostic biomarkers and therapeutic targets for prostate cancer cell migration. Oncotarget8(47), 82430–82436 (2017).
  • Ai J , LuY, WeiQ, LiH. Comparative proteomics uncovers correlated signaling network and potential biomarkers for progression of prostate cancer. Cell. Physiol. Biochem.41(1), 1–9 (2017).
  • Bahmad HF , PengW, ZhuRet al. Protein expression analysis of an in vitro murine model of prostate cancer progression: towards identification of high-potential therapeutic targets. J. Pers. Med.10(3), 83 (2020).
  • Ni J , CozziP, HaoJet al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int. J. Biochem. Cell Biol.45(12), 2736–2748 (2013).
  • Saraon P , CretuD, MusrapNet al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol. Cell. Proteomics12(6), 1589–1601 (2013).
  • Labanca E , BizzottoJ, SanchisPet al. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene40, 6284–6298 (2021).
  • Höti N , YangS, HuY, ShahP, HaffnerMC, ZhangH. Overexpression of α (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells. Prostate Cancer Prostatic Dis.21(1), 137–146 (2018).
  • Wang X , ChenJ, LiQKet al. Overexpression of α(1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology24(10), 935–944 (2014).
  • Höti N , ShahP, HuY, YangS, ZhangH. Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance. Proteomics.17(6), 10.1002/pmic.201600228 (2017).
  • Ferrari N , GranataI, CapaiaMet al. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun. Signal.15(1), 51 (2017).
  • Barboro P , BenelliR, TosettiFet al. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis41(9), 1246–1252 (2020).
  • Blomme A , FordCA, MuiEet al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat. Commun.11(1), 2508 (2020).
  • Gong Y , Chippada-venkataUD, GalskyMD, HuangJ, OhWK. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer. Prostate75(6), 616–627 (2015).
  • Wise GJ , MarellaVK, TalluriG, ShirazianD. Cytokine variations in patients with hormone treated prostate cancer. J. Urol.164(3 I), 722–725 (2000).
  • Izumi K , FangLY, MizokamiAet al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol. Med.5(9), 1383–1401 (2013).
  • Papukashvili D , LiuC, RcheulishviliNet al. DKK1-targeting cholesterol-modified siRNA implication in hair growth regulation. Biochem. Biophys. Res. Commun.668, 55–61 (2023).
  • Zhao J , LinH, WangL, GuoK, JingR, LiX. Suppression of FGF5 and FGF18 expression by cholesterol-modified siRNAs promotes hair growth in mice. Front. Pharmacol.12, 666860 (2021).
  • Alshaer W , ZureigatH, AlAet al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol.905, 174178 (2021).
  • Subhan MA , AttiaSA, TorchilinVP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci.274, 119337 (2021).
  • Zhang MM , BahalR, RasmussenTP, ManautouJE, ZhongX-B. The growth of siRNA-based therapeutics: updated clinical studies. Biochem. Pharmacol.189, 114432 (2021).
  • Lam JKW , ChowMYT, ZhangY, LeungSWS. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids4(9), e252 (2015).
  • Ahn I , KangC, HanJ. Where should siRNAs go: applicable organs for siRNA drugs. Exp. Mol. Med.55(7), 1283–1292 (2023).
  • Jing X , AryaV, ReynoldsKS, RogersH. Clinical pharmacology of RNA interference–based therapeutics: a summary based on Food and Drug Administration-approved small interfering RNAs. Drug Metab. Dispos.51(2), 193–198 (2023).
  • Hariharan VN , ShinM, ChangC-Wet al. Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA120(11), 2017 (2017).
  • Kim H , MunD, KangJY, LeeSH, YunN, JoungB. Improved cardiac-specific delivery of RAGE siRNA within small extracellular vesicles engineered to express intense cardiac targeting peptide attenuates myocarditis. Mol. Ther. Nucleic Acids24, 1024–1032 (2021).
  • Tang W , ChenY, JangHSet al. Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. J. Control. Release341, 300–313 (2022).
  • Khan T , WeberH, DimuzioJet al. Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol. Ther. Nucleic Acids5(8), e342 (2016).
  • Yan H , HuY, AkkA, WicklineSA, PanH, PhamCTN. Peptide-siRNA nanoparticles targeting NF-κB p50 mitigate experimental abdominal aortic aneurysm progression and rupture. Biomater. Adv.139, 213009 (2022).
  • Nanna AR , Kel'inAV, TheileCet al. Generation and validation of structurally defined antibody–siRNA conjugates. Nucleic Acids Res.48(10), 5281–5293 (2020).
  • Zhang Y , DuanH, ZhaoHet al. Development and evaluation of a PSMA-targeted nanosystem co-packaging docetaxel and androgen receptor siRNA for castration-resistant prostate cancer treatment. Pharmaceutics14(5), 964 (2022).
  • Diao Y , WangG, ZhuBet al. Loading of ‘cocktail siRNAs’ into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biol. Ther.23(1), 163–172 (2022).
  • Chen J , YangY, XuDet al. Mesoporous silica nanoparticles combined with AKR1C3 siRNA inhibited the growth of castration-resistant prostate cancer by suppressing androgen synthesis in vitro and in vivo. Biochem. Biophys. Res. Commun.540, 83–89 (2021).
  • Compagno D , MerleC, MorinAet al. siRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas. PLOS ONE2(10), e1006 (2007).
  • Zhang X , HeZ, XiangLet al. Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther.13, 1357–1372 (2019).
  • Oner E , KotmakciM, BairdAMet al. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J. Nanobiotechnology19, 71 (2021).
  • Liao X , TangS, ThrasherJB, GrieblingTL, LiB. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther.4(4), 505–515 (2005).
  • Yang C , MaD, LuL, YangX, XiZ. Synthesis of KUE-siRNA conjugates for prostate cancer cell-targeted gene silencing. ChemBioChem22(19), 2888–2895 (2021).
  • Lee JB , ZhangK, TamYYCet al. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int. J. Cancer131(5), E781–790 (2012).
  • Ashrafizadeh M , HushmandiK, MoghadamERet al. Progress in delivery of siRNA-based therapeutics employing nano-vehicles for treatment of prostate cancer. Bioengineering7(3), 91 (2020).
  • Hattab D , GazzaliAM, BakhtiarA. Clinical advances of siRNA-based nanotherapeutics for cancer treatment. Pharmaceutics13(7), 1009 (2021).
  • Cheng H , SnoekR, GhaidiF, CoxME, RenniePS. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res.66(21), 10613–10620 (2006).
  • Luna Velez MV , VerhaeghGW, SmitF, SedelaarJPM, SchalkenJA. Suppression of prostate tumor cell survival by antisense oligonucleotide-mediated inhibition of AR-V7 mRNA synthesis. Oncogene38(19), 3696–3709 (2019).
  • Yang J , XieSX, HuangYet al. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice. Nanomedicine7(9), 1297–1309 (2012).
  • Corbin JM , GeorgescuC, WrenJD, XuC, AschAS, Ruiz-EchevarríaMJ. Seed-mediated RNA interference of androgen signaling and survival networks induces cell death in prostate cancer cells. Mol. Ther. Nucleic Acids24, 337–351 (2021).
  • Hååg P , BekticJ, BartschG, KlockerH, EderIE. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol.96(3–4), 251–258 (2005).
  • Sun A , TangJ, TerranovaPF, ZhangX, ThrasherJB, LiB. Adeno-associated virus-delivered short hairpin-structured RNA for androgen receptor gene silencing induces tumor eradication of prostate cancer xenografts in nude mice: a preclinical study. Int. J. Cancer126(3), 764–774 (2010).
  • Snoek R , ChengH, MargiottiKet al. In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin. Cancer Res.15(1), 39–47 (2009).
  • Walsh EE , FrenckRW, FalseyARet al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med.383(25), 2439–2450 (2020).
  • Haas EJ , AnguloFJ, McLaughlinJMet al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet397(10287), 1819–1829 (2021).
  • Corbett KS , FlynnB, FouldsKEet al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med.383(16), 1544–1555 (2020).
  • Wang X , LiuC, RcheulishviliNet al. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines8(1), 76 (2023).
  • Liu C , RcheulishviliN, ShenZet al. Development of an LNP-encapsulated mRNA-RBD vaccine against SARS-CoV-2 and its variants. Pharmaceutics14(5), 1101 (2022).
  • Papukashvili D , RcheulishviliN, LiuC, JiY, HeY, WangPG. Self-amplifying RNA approach for protein replacement therapy. Int. J. Mol. Sci.23(21), 12884 (2022).
  • Liu C , PapukashviliD, DongYet al. Identification of tumor antigens and design of mRNA vaccine for colorectal cancer based on the immune subtype. Front. Cell Dev. Biol.9, 783527 (2022).
  • Chaudhary N , WeissmanD, WhiteheadKA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov.20(11), 817–838 (2021).
  • Lu ZJ , MathewsDH. OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res.36(Web Server issue), 104–108 (2008).
  • Mahmoodi Chalbatani G , DanaH, GharagouzlooEet al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int. J. Nanomedicine14, 3111–3128 (2019).
  • Wadosky KM , KoochekpourS. Androgen receptor splice variants and prostate cancer: from bench to bedside. Oncotarget8(11), 18550–18576 (2017).
  • Zheng Z , LiJ, LiuYet al. The crucial role of AR-V7 in enzalutamide-resistance of castration-resistant prostate cancer. Cancers (Basel)14(19), 4877 (2022).
  • Zhao S , LiaoJ, ZhangS, ShenM, LiX, ZhouL. The positive relationship between androgen receptor splice variant-7 expression and the risk of castration-resistant prostate cancer: a cumulative analysis. Front. Oncol.13, 1053111 (2023).
  • Sobhani N , NeeliPK, D'AngeloAet al. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. Int. J. Mol. Sci.22, 5515 (2021).
  • Liu X , LedetE, LiDet al. A whole blood assay for AR-V7 and ARv567es in patients with prostate cancer. J. Urol.196(6), 1758–1763 (2016).
  • Bernemann C , HumbergV, ThielenBet al. Comparative analysis of AR variant AR-V567es mRNA detection systems reveals eminent variability and questions the role as a clinical biomarker in prostate cancer. Clin. Cancer Res.25(13), 3856–3864 (2019).
  • Kohli M , HoY, HillmanDWet al. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res.23(16), 4704–4715 (2017).
  • Kallio HML , HietaR, LatonenLet al. Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. Br. J. Cancer119(3), 347–356 (2018).
  • Ledford H . Gene-silencing drug approved. Nature560(7718), 291–292 (2018).
  • Hoy SM . Patisiran: first global approval. Drugs78(15), 1625–1631 (2018).
  • Mullard A . RNAi agents score an approval and drive an acquisition. Nat. Rev. Drug Discov.19(1), 10 (2020).
  • Mullard A . 2020 FDA drug approvals. Nat. Rev. Drug Discov.20(2), 85–90 (2021).
  • Mullard A . 2021 FDA approvals. Nat. Rev. Drug Discov.21(2), 83–88 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.