428
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular and Cellular Biology of Rhabdomyosarcoma

, , , &
Pages 1449-1475 | Published online: 10 Nov 2009

Bibliography

  • Weiss SW , GoldblumJR: Rhabdomyosarcoma. In: Enzinger and Weiss’s Soft Tissue Tumors. MO, USA, 785–835 (2001).
  • Parham DM , EllisonDA: Rhabdomyosarcomas in adults and children: an update.Arch. Pathol. Lab. Med.130(10), 1454–1465 (2006).
  • Paulino AC , OkcuMF: Rhabdomyosarcoma.Curr. Probl. Cancer32(1), 7–34 (2008).
  • Ognjanovic S , LinaberyAM, CharbonneauB, RossJA: Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975–2005.Cancer115(18), 4218–4226 (2009).
  • Tsokos M , WebberBL, ParhamDMet al.: Rhabdomyosarcoma. A new classification scheme related to prognosis.Arch. Pathol. Lab. Med.116(8), 847–855 (1992).
  • Parham DM , ShapiroDN, DowningJR, WebberBL, DouglassEC: Solid alveolar rhabdomyosarcomas with the t(2;13). Report of two cases with diagnostic implications.Am. J. Surg. Pathol.18(5), 474–478 (1994).
  • Newton WA Jr , GehanEA, WebberBLet al.: Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification – an intergroup rhabdomyosarcoma study.Cancer76(6), 1073–1085 (1995).
  • Charytonowicz E , Cordon-CardoC, MatushanskyI, ZimanM: Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell?Cancer Lett.279(2), 126–136 (2009).
  • Davicioni E , AndersonMJ, FinckensteinFGet al.: Molecular classification of rhabdomyosarcoma – genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group.Am. J. Pathol.174(2), 550–564 (2009).
  • Meza JL , AndersonJ, PappoAS, MeyerWH: Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children’s Oncology Group.J. Clin. Oncol.24(24), 3844–3851 (2006).
  • Oberlin O , ReyA, LydenEet al.: Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups.J. Clin. Oncol.26(14), 2384–2389 (2008).
  • Merlino G , HelmanLJ: Rhabdomyosarcoma – working out the pathways.Oncogene18(38), 5340–5348 (1999).
  • Buckingham M , BajardL, ChangTet al.: The formation of skeletal muscle: from somite to limb.J. Anat.202(1), 59–68 (2003).
  • Berkes CA , TapscottSJ: MyoD and the transcriptional control of myogenesis.Semin. Cell Dev. Biol.16(4–5), 585–595 (2005).
  • Buckingham M , MontarrasD: Skeletal muscle stem cells.Curr. Opin. Genet. Dev.18(4), 330–336 (2008).
  • Morotti RA , NicolKK, ParhamDMet al.: An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience.Am. J. Surg. Pathol.30(8), 962–968 (2006).
  • Heerema-McKenney A , WijnaendtsLC, PulliamJFet al.: Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype.Am. J. Surg. Pathol.32(10), 1513–1522 (2008).
  • Sultan I , QaddoumiI, YaserS, Rodriguez-GalindoC, FerrariA: Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients.J. Clin. Oncol.27(20), 3391–3397 (2009).
  • Sorensen PH , LynchJC, QualmanSJet al.: PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group.J. Clin. Oncol.20(11), 2672–2679 (2002).
  • Breneman JC , LydenE, PappoASet al.: Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma – a report from the Intergroup Rhabdomyosarcoma Study IV.J. Clin. Oncol.21(1), 78–84 (2003).
  • Mercado GE , BarrFG: Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances.Curr. Mol. Med.7(1), 47–61 (2007).
  • Slater O , ShipleyJ: Clinical relevance of molecular genetics to paediatric sarcomas.J. Clin. Pathol.60(11), 1187–1194 (2007).
  • Davis RJ , BennicelliJL, MacinaRA, NycumLM, BiegelJA, BarrFG: Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.Hum. Mol. Genet.4(12), 2355–2362 (1995).
  • Barr FG , QualmanSJ, MacrisMHet al.: Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions.Cancer Res.62(16), 4704–4710 (2002).
  • Wachtel M , DettlingM, KoscielniakEet al.: Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1.Cancer Res.64(16), 5539–5545 (2004).
  • Hosoi H , KakazuN, KonishiEet al.: A novel PAX3 rearrangement in embryonal rhabdomyosarcoma.Cancer Genet. Cytogenet.189(2), 98–104 (2009).
  • Meloni-Ehrig A , SmithB, ZgodaJet al.: Translocation (2;8)(q35;q13): a recurrent abnormality in congenital embryonal rhabdomyosarcoma.Cancer Genet. Cytogenet.191(1), 43–45 (2009).
  • Helman LJ , MeltzerP: Mechanisms of sarcoma development.Nat. Rev. Cancer3(9), 685–694 (2003).
  • Scrable H , CaveneeW, GhavimiF, LovellM, MorganK, SapienzaC: A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting.Proc. Natl Acad. Sci. USA86(19), 7480–7484 (1989).
  • Besnard-Guerin C , NewshamI, WinqvistR, CaveneeWK: A common region of loss of heterozygosity in Wilms’ tumor and embryonal rhabdomyosarcoma distal to the D11S988 locus on chromosome 11p15.5.Hum. Genet.97(2), 163–170 (1996).
  • Visser M , SijmonsC, BrasJet al.: Allelotype of pediatric rhabdomyosarcoma.Oncogene15(11), 1309–1314 (1997).
  • Smith AC , ChoufaniS, FerreiraJC, WeksbergR: Growth regulation, imprinted genes, and chromosome 11p15.5.Pediatr. Res.61(5 Pt 2), 43R–47R (2007).
  • Cavenee WK , HansenMF, ScrableHJ, JamesCD: Loss of genetic information in cancer.Ciba Found. Symp.142, 79–88 (1989).
  • Pedone PV , TiraboscoR, CavazzanaAOet al.: Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors.Hum. Mol. Genet.3(7), 1117–1121 (1994).
  • Zhan S , ShapiroDN, HelmanLJ: Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma.J. Clin. Invest.94(1), 445–448 (1994).
  • Casola S , PedonePV, CavazzanaAOet al.: Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma.Oncogene14(12), 1503–1510 (1997).
  • Anderson J , GordonA, McManusA, ShipleyJ, Pritchard-JonesK: Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma.Neoplasia1(4), 340–348 (1999).
  • Bridge JA , LiuJ, WeiboltVet al.: Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study.Genes Chromosomes Cancer27(4), 337–344 (2000).
  • Khan J , SimonR, BittnerMet al.: Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays.Cancer Res.58(22), 5009–5013 (1998).
  • Khan J , WeiJS, RingnerMet al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.Nat. Med.7(6), 673–679 (2001).
  • Henderson SR , GuilianoD, PresneauNet al.: A molecular map of mesenchymal tumors.Genome Biol.6(9), R76 (2005).
  • Schaaf GJ , RuijterJM, van RuissenFet al.: Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries.FASEB J.19(3), 404–406 (2005).
  • De Pittà C , TombolanL, AlbieroGet al.: Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors.Int. J. Cancer118(11), 2772–2781 (2006).
  • Missiaglia E , SelfeJ, HamdiMet al.: Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development.Genes Chromosomes Cancer48(6), 455–467 (2009).
  • Davicioni E , FinckensteinFG, ShahbazianV: Identification of a PAX–FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas.Cancer Res.66(14), 6936–6946 (2006).
  • Laè M , AhnEH, MercadoGEet al.: Global gene expression profiling of PAX–FKHR fusion-positive alveolar and PAX–FKHR fusion-negative embryonal rhabdomyosarcomas.J. Pathol.212(2), 143–151 (2007).
  • Romualdi C , De PittaC, TombolanLet al.: Defining the gene expression signature of rhabdomyosarcoma by meta-analysis.BMC Genomics7, 287 (2006).
  • Baer C , NeesM, BreitSet al.: Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma.Int. J. Cancer110(5), 687–694 (2004).
  • Roberts I , WienbergJ, NachevaE, GraceC, GriffinD, ColemanN: Novel method for the production of multiple colour chromosome paints for use in karyotyping by fluorescence in situ hybridisation.Genes Chromosomes Cancer25(3), 241–250 (1999).
  • Martinez-Ramirez A , Rodriguez-PeralesS, MelendezBet al.: Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques.Cancer Genet. Cytogenet.141(2), 138–142 (2003).
  • Barr FG , NautaLE, DavisRJ, SchaferBW, NycumLM, BiegelJA: In vivo amplification of the PAX3–FKHR and PAX7–FKHR fusion genes in alveolar rhabdomyosarcoma.Hum. Mol. Genet.5(1), 15–21 (1996).
  • Davis RJ , BarrFG: Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma.Proc. Natl Acad. Sci. USA94(15), 8047–8051 (1997).
  • Fitzgerald JC , ScherrAM, BarrFG: Structural analysis of PAX7 rearrangements in alveolar rhabdomyosarcoma.Cancer Genet. Cytogenet.117(1), 37–40 (2000).
  • Bennicelli JL , EdwardsRH, BarrFG: Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma.Proc. Natl Acad. Sci. USA93(11), 5455–5459 (1996).
  • Scheidler S , FredericksWJ, RauscherFJIII, BarrFG, VogtPK: The hybrid PAX3–FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture.Proc. Natl Acad. Sci. USA93(18), 9805–9809 (1996).
  • Khan J , BittnerML, SaalLHet al.: cDNA microarrays detect activation of a myogenic transcription program by the PAX3–FKHR fusion oncogene.Proc. Natl Acad. Sci. USA96(23), 13264–13269 (1999).
  • Lam PY , SublettJE, HollenbachAD, RousselMF: The oncogenic potential of the Pax3–FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain.Mol. Cell. Biol.19(1), 594–601 (1999).
  • Zhang L , WangC: PAX3–FKHR transformation increases 26 S proteasome-dependent degradation of p27Kip1, a potential role for elevated Skp2 expression.J. Biol. Chem.278(1), 27–36 (2003).
  • Taulli R , ScuoppoC, BersaniFet al.: Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma.Cancer Res.66(9), 4742–4749 (2006).
  • Scuoppo C , RiessI, Schmitt-NeyMet al.: The oncogenic transcription factor PAX3–FKHR can convert fibroblasts into contractile myotubes.Exp. Cell Res.313(11), 2308–2317 (2007).
  • Linardic CM , DownieDL, QualmanS, BentleyRC, CounterCM: Genetic modeling of human rhabdomyosarcoma.Cancer Res.65(11), 4490–4495 (2005).
  • Naini S , EtheridgeKT, AdamSJet al.: Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma.Cancer Res.68(23), 9583–9588 (2008).
  • Ren YX , FinckensteinFG, AbduevaDAet al.: Mouse mesenchymal stem cells expressing PAX–FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations.Cancer Res.68(16), 6587–6597 (2008).
  • Bernasconi M , RemppisA, FredericksWJ, RauscherFJIII, SchaferBW: Induction of apoptosis in rhabdomyosarcoma cells through downregulation of PAX proteins.Proc. Natl Acad. Sci. USA93(23), 13164–13169 (1996).
  • Fredericks WJ , AyyanathanK, HerlynM, FriedmanJR, RauscherFJ3rd: An engineered PAX3–KRAB transcriptional repressor inhibits the malignant phenotype of alveolar rhabdomyosarcoma cells harboring the endogenous PAX3–FKHR oncogene.Mol. Cell. Biol.20(14), 5019–5031 (2000).
  • Ebauer M , WachtelM, NiggliFK, SchaferBW: Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR.Oncogene26(51), 7267–7281 (2007).
  • Kikuchi K , TsuchiyaK, OtabeOet al.: Effects of PAX3–FKHR on malignant phenotypes in alveolar rhabdomyosarcoma.Biochem. Biophys. Res. Commun.365(3), 568–574 (2008).
  • Linardic CM : PAX3–FOXO1 fusion gene in rhabdomyosarcoma.Cancer Lett.270(1), 10–18 (2008).
  • Begum S , EmamiN, CheungA, WilkinsO, DerS, HamelPA: Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR.Oncogene24(11), 1860–1872 (2005).
  • Epstein JA , SongB, LakkisM, WangC: Tumor-specific PAX3–FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor a receptor.Mol. Cell. Biol.18(7), 4118–4130 (1998).
  • Mercado GE , XiaSJ, ZhangCet al.: Identification of PAX3–FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target.Genes Chromosomes Cancer47(6), 510–520 (2008).
  • Robson EJ , HeSJ, EcclesMR: A PANorama of PAX genes in cancer and development.Nat. Rev. Cancer6(1), 52–62 (2006).
  • Margue CM , BernasconiM, BarrFG, SchaferBW: Transcriptional modulation of the anti-apoptotic protein BCL-xL by the paired box transcription factors PAX3 and PAX3/FKHR.Oncogene19(25), 2921–2929 (2000).
  • Li HG , WangQ, LiHMet al.: PAX3 and PAX3–FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN.Cancer Lett.253(2), 215–223 (2007).
  • Anastasi S , GiordanoS, SthandierOet al.: A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive Met kinase activation on myogenic differentiation.J. Cell Biol.137(5), 1057–1068 (1997).
  • Roeb W , BoyerA, CaveneeWK, ArdenKC: PAX3–FOXO1 controls expression of the p57Kip2 cell-cycle regulator through degradation of EGR1.Proc. Natl Acad. Sci. USA104(46), 18085–18090 (2007).
  • Barber TD , BarberMC, TomescuO, BarrFG, RubenS, FriedmanTB: Identification of target genes regulated by PAX3 and PAX3–FKHR in embryogenesis and alveolar rhabdomyosarcoma.Genomics79(3), 278–284 (2002).
  • Gee MF , TsuchidaR, Eichler-JonssonC, DasB, BaruchelS, MalkinD: Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid.Oncogene24(54), 8025–8037 (2005).
  • Onisto M , SlongoML, GregnaninL, GastaldiT, CarliM, RosolenA: Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines.Int. J. Oncol.27(3), 791–798 (2005).
  • Nabarro S , HimoudiN, PapanastasiouAet al.: Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3–FKHR fusion oncoprotein.J. Exp. Med.202(10), 1399–1410 (2005).
  • Tomescu O , XiaSJ, StrezleckiDet al.: Inducible short-term and stable long-term cell culture systems reveal that the PAX3–FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression.Lab. Invest.84(8), 1060–1070 (2004).
  • Chen Y , TakitaJ, MizuguchiMet al.: Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression.Genes Chromosomes Cancer46(4), 348–358 (2007).
  • El-Badry OM , MinnitiC, KohnEC, HoughtonPJ, DaughadayWH, HelmanLJ: Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors.Cell Growth Differ.1(7), 325–331 (1990).
  • Makawita S , HoM, DurbinAD, ThornerPS, MalkinD, SomersGR: Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF2 expression is associated with translocation-negative tumors.Pediatr. Dev. Pathol.12(2), 127–135 (2009).
  • Steigen SE , SchaefferDF, WestRB, NielsenTO: Expression of insulin-like growth factor 2 in mesenchymal neoplasms.Mod. Pathol.22(7), 914–921 (2009).
  • Rikhof B , de JongS, SuurmeijerAJ, MeijerC, van der GraafWT: The insulin-like growth factor system and sarcomas.J. Pathol.217(4), 469–482 (2009).
  • Baserga R , PeruzziF, ReissK: The IGF-1 receptor in cancer biology.Int. J. Cancer107(6), 873–877 (2003).
  • Pollak M : Insulin and insulin-like growth factor signalling in neoplasia.Nat. Rev. Cancer8(12), 915–928 (2008).
  • Kim SY , ToretskyJA, ScherD, HelmanLJ: The role of IGF-1R in pediatric malignancies.Oncologist14(1), 83–91 (2009).
  • Baserga R : Customizing the targeting of IGF-1 receptor.Future Oncol.5(1), 43–50 (2009).
  • Blandford MC , BarrFG, LynchJC, RandallRL, QualmanSJ, KellerC: Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: a report from the Children’s Oncology Group.Pediatr. Blood Cancer46(3), 329–338 (2006).
  • Ayalon D , GlaserT, WernerH: Transcriptional regulation of IGF-I receptor gene expression by the PAX3–FKHR oncoprotein.Growth Horm. IGF Res.11(5), 289–297 (2001).
  • Xiong L , KouF, YangY, WuJ: A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop.J. Cell Biol.178(6), 995–1007 (2007).
  • Scotlandi K , PicciP: Targeting insulin-like growth factor 1 receptor in sarcomas.Curr. Opin. Oncol.20(4), 419–427 (2008).
  • Shapiro DN , JonesBG, ShapiroLH, DiasP, HoughtonPJ: Antisense-mediated reduction in insulin-like growth factor-I receptor expression suppresses the malignant phenotype of a human alveolar rhabdomyosarcoma.J. Clin. Invest.94(3), 1235–1242 (1994).
  • Kalebic T , TsokosM, HelmanLJ: In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and downregulates p34cdc2.Cancer Res.54(21), 5531–5534 (1994).
  • Cao L , YuY, DarkoIet al.: Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody.Cancer Res.68(19), 8039–8048 (2008).
  • Cen L , HsiehFC, LinHJ, ChenCS, QualmanSJ, LinJ: PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound.Br. J. Cancer97(6), 785–791 (2007).
  • Petricoin EF 3rd , EspinaV, AraujoRPet al.: Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival.Cancer Res.67(7), 3431–3440 (2007).
  • Cai X , CullenBR: The imprinted H19 noncoding RNA is a primary microRNA precursor.RNA13(3), 313–316 (2007).
  • Cam H , GriesmannH, BeitzingerMet al.: p53 family members in myogenic differentiation and rhabdomyosarcoma development.Cancer Cell10(4), 281–293 (2006).
  • Keleti J , QuezadoMM, AbazaMM, RaffeldM, TsokosM: The MDM2 oncoprotein is overexpressed in rhabdomyosarcoma cell lines and stabilizes wild-type p53 protein.Am. J. Pathol.149(1), 143–151 (1996).
  • Taylor AC , ShuL, DanksMKet al.: P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines.Med. Pediatr. Oncol.35(2), 96–103 (2000).
  • Xia SJ , PresseyJG, BarrFG: Molecular pathogenesis of rhabdomyosarcoma.Cancer Biol. Ther.1(2), 97–104 (2002).
  • Takahashi Y , OdaY, KawaguchiKet al.: Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma.Mod. Pathol.17(6), 660–669 (2004).
  • Ragazzini P , GamberiG, PazzagliaLet al.: Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma.Histol. Histopathol.19(2), 401–411 (2004).
  • Iolascon A , FaienzaMF, CoppolaBet al.: Analysis of cyclin-dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in childhood rhabdomyosarcoma.Genes Chromosomes Cancer15(4), 217–222 (1996).
  • Lang GA , IwakumaT, SuhYAet al.: Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome.Cell119(6), 861–872 (2004).
  • Olive KP , TuvesonDA, RuheZCet al.: Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome.Cell119(6), 847–860 (2004).
  • Kohashi K , OdaY, YamamotoHet al.: Alterations of RB1 gene in embryonal and alveolar rhabdomyosarcoma: special reference to utility of pRB immunoreactivity in differential diagnosis of rhabdomyosarcoma subtype.J. Cancer Res. Clin. Oncol.134(10), 1097–1103 (2008).
  • Kleinerman RA , TuckerMA, AbramsonDH, SeddonJM, TaroneRE, FraumeniJFJr: Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma.J. Natl Cancer Inst.99(1), 24–31 (2007).
  • Marees T , MollAC, ImhofSM, de BoerMR, RingensPJ, van LeeuwenFE: Risk of second malignancies in survivors of retinoblastoma: more than 40 years of follow-up.J. Natl Cancer Inst.100(24), 1771–1779 (2008).
  • Anderson J , GordonA, Pritchard-JonesK, ShipleyJ: Genes, chromosomes, and rhabdomyosarcoma.Genes Chromosomes Cancer26(4), 275–285 (1999).
  • Bridge JA , LiuJ, QualmanSJet al.: Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes.Genes Chromosomes Cancer33(3), 310–321 (2002).
  • Williamson D , SelfeJ, GordonTet al.: Role for amplification and expression of glypican-5 in rhabdomyosarcoma.Cancer Res.67(1), 57–65 (2007).
  • Barr FG , DuanF, SmithLMet al.: Genomic and clinical analyses of 2p24 and 12q13–q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group.Genes Chromosomes Cancer48(8), 661–672 (2009).
  • Toffolatti L , FrascellaE, NinfoVet al.: MYCN expression in human rhabdomyosarcoma cell lines and tumour samples.J. Pathol.196(4), 450–458 (2002).
  • Williamson D , LuYJ, GordonTet al.: Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype.J. Clin. Oncol.23(4), 880–888 (2005).
  • Chen Y , TakitaJ, HiwatariMet al.: Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies.Genes Chromosomes Cancer45(6), 583–591 (2006).
  • Langenau DM , KeefeMD, StorerNYet al.: Effects of RAS on the genesis of embryonal rhabdomyosarcoma.Genes Dev.21(11), 1382–1395 (2007).
  • Kratz CP , SteinemannD, NiemeyerCMet al.: Uniparental disomy at chromosome 11p15.5 followed by HRAS mutations in embryonal rhabdomyosarcoma: lessons from Costello syndrome.Hum. Mol. Genet.16(4), 374–379 (2007).
  • Astolfi A , NanniP, LanduzziLet al.: An anti-apoptotic role for NGF receptors in human rhabdomyosarcoma.Eur. J. Cancer37(13), 1719–1725 (2001).
  • Croci S , LanduzziL, AstolfiAet al.: Inhibition of connective tissue growth factor (CTGF/CCN2) expression decreases the survival and myogenic differentiation of human rhabdomyosarcoma cells.Cancer Res.64(5), 1730–1736 (2004).
  • Goldstein M , MellerI, Orr-UrtregerA: FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5´ CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes.Genes Chromosomes Cancer46(11), 1028–1038 (2007).
  • Kurmasheva RT , HarwoodFC, HoughtonPJ: Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors.Mol. Cancer Ther.6(5), 1620–1628 (2007).
  • Ricci C , LanduzziL, RossiIet al.: Expression of HER/erbB family of receptor tyrosine kinases and induction of differentiation by glial growth factor 2 in human rhabdomyosarcoma cells.Int. J. Cancer87(1), 29–36 (2000).
  • Ganti R , SkapekSX, ZhangJet al.: Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma.Mod. Pathol.19(9), 1213–1220 (2006).
  • Wachtel M , RungeT, LeuschnerIet al.: Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry.J. Clin. Oncol.24(5), 816–822 (2006).
  • De Giovanni C , LanduzziL, FrabettiFet al.: Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells.Cancer Res.56(17), 3898–3901 (1996).
  • Ricci C , PolitoL, NanniPet al.: HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells.J. Immunother.25(4), 314–323 (2002).
  • Armistead PM , SalganickJ, RohJSet al.: Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients.Cancer110(10), 2293–2303 (2007).
  • Ferracini R , OliveroM, Di RenzoMFet al.: Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas.Oncogene12(8), 1697–1705 (1996).
  • Rees H , WilliamsonD, PapanastasiouAet al.: The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas.Growth Factors24(3), 197–208 (2006).
  • Sharp R , RecioJA, JhappanCet al.: Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis.Nat. Med.8(11), 1276–1280 (2002).
  • Taniguchi E , NishijoK, McCleishATet al.: PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma.Oncogene27(51), 6550–6560 (2008).
  • Nanni P , NicolettiG, PalladiniAet al.: Opposing control of rhabdomyosarcoma growth and differentiation by myogenin and interleukin 4.Mol. Cancer Ther.8(4), 754–761 (2009).
  • Ohali A , AvigadS, NaumovI, GoshenY, AshS, YanivI: Different telomere maintenance mechanisms in alveolar and embryonal rhabdomyosarcoma.Genes Chromosomes Cancer47(11), 965–970 (2008).
  • Caldas H , HollowayMP, HallBM, QualmanSJ, AlturaRA: Survivin-directed RNA interference cocktail is a potent suppressor of tumour growth in vivo.J. Med. Genet.43(2), 119–128 (2006).
  • Bryson-Richardson RJ , CurriePD: The genetics of vertebrate myogenesis.Nat. Rev. Genet.9(8), 632–646 (2008).
  • Gayraud-Morel B , ChretienF, TajbakhshS: Skeletal muscle as a paradigm for regenerative biology and medicine.Regen. Med.4(2), 293–319 (2009).
  • Messina G , CossuG: The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7.Genes Dev.23(8), 902–905 (2009).
  • Bois PR , GrosveldGC: FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts.EMBO J.22(5), 1147–1157 (2003).
  • Wu AL , KimJH, ZhangC, UntermanTG, ChenJ: Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components.Endocrinology149(3), 1407–1414 (2008).
  • van Rooij E , LiuN, OlsonEN: MicroRNAs flex their muscles.Trends Genet.24(4), 159–166 (2008).
  • Williams AH , LiuN, van RooijE, OlsonEN: MicroRNA control of muscle development and disease.Curr. Opin. Cell Biol.21(3), 461–469 (2009).
  • Wang H , GarzonR, SunHet al.: NF-kB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma.Cancer Cell14(5), 369–381 (2008).
  • Ren H , YinP, DuanC: IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop.J. Cell Biol.182(5), 979–991 (2008).
  • Graf Finckenstein F , ShahbazianV, DavicioniE, RenYX, AndersonMJ: PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis.Oncogene27(14), 2004–2014 (2008).
  • Lang D , LuMM, HuangLet al.: Pax3 functions at a nodal point in melanocyte stem cell differentiation.Nature433(7028), 884–887 (2005).
  • Olguin HC , YangZ, TapscottSJ, OlwinBB: Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination.J. Cell Biol.177(5), 769–779 (2007).
  • Subramanian S , LuiWO, LeeCHet al.: MicroRNA expression signature of human sarcomas.Oncogene27(14), 2015–2026 (2008).
  • Ciarapica R , RussoG, VerginelliFet al.: Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma.Cell Cycle8(1), 172–175 (2009).
  • Taulli R , BersaniF, FoglizzoVet al.: The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation.J. Clin. Invest.119(8), 2366–2378 (2009).
  • Hahn H , WojnowskiL, SpechtKet al.: Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma.J. Biol. Chem.275(37), 28341–28344 (2000).
  • Perk K , ShachatDA, MoloneyJB: Pathogenesis of a rhabdomyosarcoma (undifferentiated type) in rats induced by a murine sarcoma virus (Moloney).Cancer Res.28(6), 1197–1206 (1968).
  • Nanni P , AzzarelloG, TessarolloLet al.: In vitro differentiation of rhabdomyosarcomas induced by nickel or by Moloney murine sarcoma virus.Br. J. Cancer63(5), 736–742 (1991).
  • Gilman JP : Metal carcinogenesis. II. A study on the carcinogenic activity of cobalt, copper, iron, and nickel compounds.Cancer Res.22, 158–162 (1962).
  • Kirkpatrick CJ , AlvesA, KohlerHet al.: Biomaterial-induced sarcoma: A novel model to study preneoplastic change.Am. J. Pathol.156(4), 1455–1467 (2000).
  • Hansen T , ClermontG, AlvesAet al.: Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles.J. R. Soc. Interface3(11), 767–775 (2006).
  • Lindor NM , McMasterML, LindorCJ, GreeneMH: Concise handbook of familial cancer susceptibility syndromes – second edition.J. Natl Cancer Inst. Monogr. (38), 1–93 (2008).
  • Ferrari A , BisognoG, MacalusoAet al.: Soft-tissue sarcomas in children and adolescents with neurofibromatosis type 1.Cancer109(7), 1406–1412 (2007).
  • Gorlin RJ : Nevoid basal cell carcinoma (Gorlin) syndrome.Genet. Med.6(6), 530–539 (2004).
  • Hanks S , ColemanK, SummersgillBet al.: Comparative genomic hybridization and BUB1B mutation analyses in childhood cancers associated with mosaic variegated aneuploidy syndrome.Cancer Lett.239(2), 234–238 (2006).
  • Kratz CP , HolterS, EtzlerJet al.: Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome.J. Med. Genet.46(6), 418–420 (2009).
  • Grufferman S , RuymannF, OgnjanovicS, ErhardtEB, MaurerHM: Prenatal X-ray exposure and rhabdomyosarcoma in children: a report from the children’s oncology group.Cancer Epidemiol. Biomarkers Prev.18(4), 1271–1276 (2009).
  • Harvey M , McArthurMJ, MontgomeryCAJr, ButelJS, BradleyA, DonehowerLA: Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice.Nat. Genet.5(3), 225–229 (1993).
  • Jacks T , RemingtonL, WilliamsBOet al.: Tumor spectrum analysis in p53-mutant mice.Curr. Biol.4(1), 1–7 (1994).
  • Hahn H , WojnowskiL, ZimmerAM, HallJ, MillerG, ZimmerA: Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome.Nat. Med.4(5), 619–622 (1998).
  • Takayama H , LaRochelleWJ, SharpRet al.: Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor.Proc. Natl Acad. Sci. USA94(2), 701–706 (1997).
  • Teitz T , ChangJC, KitamuraM, YenTS, KanYW: Rhabdomyosarcoma arising in transgenic mice harboring the β-globin locus control region fused with simian virus 40 large T antigen gene.Proc. Natl Acad. Sci. USA90(7), 2910–2914 (1993).
  • Galindo RL , AllportJA, OlsonEN: A Drosophila model of the rhabdomyosarcoma initiator PAX7–FKHR.Proc. Natl Acad. Sci. USA103(36), 13439–13444 (2006).
  • Nanni P , NicolettiG, De GiovanniCet al.: Development of rhabdomyosarcoma in HER-2/neu transgenic p53 mutant mice.Cancer Res.63(11), 2728–2732 (2003).
  • Fleischmann A , JochumW, EferlR, WitowskyJ, WagnerEF: Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene.Cancer Cell4(6), 477–482 (2003).
  • Keller C , ArenkielBR, CoffinCM, El-BardeesyN, DePinhoRA, CapecchiMR: Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function.Genes Dev.18(21), 2614–2626 (2004).
  • Tsumura H , YoshidaT, SaitoH, Imanaka-YoshidaK, SuzukiN: Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic rhabdomyosarcoma development in adult mice.Oncogene25(59), 7673–7679 (2006).
  • Kobbert C , MollmannC, SchafersMet al.: Transgenic model of cardiac rhabdomyosarcoma formation.J. Thorac Cardiovasc. Surg.136(5), 1178–1186 (2008).
  • Zibat A , UhmannA, NitzkiFet al.: Time-point and dosage of gene inactivation determine the tumor spectrum in conditional Ptch knockouts.Carcinogenesis30(6), 918–926 (2009).
  • Hahn H , NitzkiF, SchorbanT, HemmerleinB, ThreadgillD, RosemannM: Genetic mapping of a Ptch1-associated rhabdomyosarcoma susceptibility locus on mouse chromosome 2.Genomics84(5), 853–858 (2004).
  • Keller C , CapecchiMR: New genetic tactics to model alveolar rhabdomyosarcoma in the mouse.Cancer Res.65(17), 7530–7532 (2005).
  • Merlino G , KhannaC: Fishing for the origins of cancer.Genes Dev.21(11), 1275–1279 (2007).
  • Amstutz R , WachtelM, TroxlerHet al.: Phosphorylation regulates transcriptional activity of PAX3/FKHR and reveals novel therapeutic possibilities.Cancer Res.68(10), 3767–3776 (2008).
  • Oesch S , WalterD, WachtelMet al.: Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma.Mol. Cancer Ther.8(7), 1838–1845 (2009).
  • De Giovanni C , MelaniC, NanniPet al.: Redundancy of autocrine loops in human rhabdomyosarcoma cells: induction of differentiation by suramin.Br. J. Cancer72(5), 1224–1229 (1995).
  • Scotlandi K , ManaraMC, NicolettiGet al.: Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors.Cancer Res.65(9), 3868–3876 (2005).
  • Kolb EA , GorlickR, HoughtonPJet al.: Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program.Pediatr. Blood Cancer50(6), 1190–1197 (2008).
  • Huang F , GreerA, HurlburtWet al.: The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors.Cancer Res.69(1), 161–170 (2009).
  • Bjornsti MA , HoughtonPJ: The TOR pathway: a target for cancer therapy.Nat. Rev. Cancer4(5), 335–348 (2004).
  • Wan X , HelmanLJ: The biology behind mTOR inhibition in sarcoma.Oncologist12(8), 1007–1018 (2007).
  • Houghton PJ , MortonCL, KolbEAet al.: Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program.Pediatr. Blood Cancer50(4), 799–805 (2008).
  • Wan X , HarkavyB, ShenN, GroharP, HelmanLJ: Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism.Oncogene26(13), 1932–1940 (2007).
  • Maris JM , CourtrightJ, HoughtonPJet al.: Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program.Pediatr. Blood Cancer50(3), 581–587 (2008).
  • Maris JM , CourtrightJ, HoughtonPJet al.: Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program.Pediatr. Blood Cancer51(1), 42–48 (2008).
  • Lollini PL , De GiovanniC, LanduzziL, NicolettiG, ScotlandiK, NanniP: Reduced metastatic ability of In vitro differentiated human rhabdomyosarcoma cells.Invasion Metastasis11(2), 116–124 (1991).
  • Sirri V , LeibovitchMP, LeibovitchSA: Muscle regulatory factor MRF4 activates differentiation in rhabdomyosarcoma RD cells through a positive-acting C-terminal protein domain.Oncogene22(36), 5658–5666 (2003).
  • Yang Z , ZhangJ, CongHet al.: A retrovirus-based system to stably silence GDF-8 expression and enhance myogenic differentiation in human rhabdomyosarcoma cells.J. Gene Med.10(8), 825–833 (2008).
  • Yang Z , MacQuarrieKL, AnalauEet al.: MyoD and E-protein heterodimers switch rhabdomyosarcoma cells from an arrested myoblast phase to a differentiated state.Genes Dev.23(6), 694–707 (2009).
  • Astolfi A , De GiovanniC, LanduzziLet al.: Identification of new genes related to the myogenic differentiation arrest of human rhabdomyosarcoma cells.Gene274(1–2), 139–149 (2001).
  • Tanzarella S , LionelloI, ValentinisB, RussoV, LolliniPL, TraversariC: Rhabdomyosarcomas are potential target of MAGE-specific immunotherapies.Cancer Immunol. Immunother.53(6), 519–524 (2004).
  • van den Broeke LT , PendletonCD, MackallC, HelmanLJ, BerzofskyJA: Identification and epitope enhancement of a PAX-FKHR fusion protein breakpoint epitope in alveolar rhabdomyosarcoma cells created by a tumorigenic chromosomal translocation inducing CTL capable of lysing human tumors.Cancer Res.66(3), 1818–1823 (2006).
  • Mackall CL , RheeEH, ReadEJet al.: A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas.Clin. Cancer Res.14(15), 4850–4858 (2008).
  • Ecke I , PetryF, RosenbergerAet al.: Antitumor effects of a combined 5-aza-2´deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice.Cancer Res.69(3), 887–895 (2009).
  • Nanni P , SchiaffinoS, De GiovanniCet al.: RMZ: a new cell line from a human alveolar rhabdomyosarcoma. In vitro expression of embryonic myosin.Br. J. Cancer54(6), 1009–1014 (1986).
  • Neale G , SuX, MortonCLet al.: Molecular characterization of the pediatric preclinical testing panel.Clin. Cancer Res.14(14), 4572–4583 (2008).
  • Anderson J , RamsayA, GouldS, Pritchard-JonesK: PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma.Am. J. Pathol.159(3), 1089–1096 (2001).
  • Linardic CM , NainiS, HerndonJE, KesserwanC, QualmanSJ, CounterCM: The PAX3–FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence.Cancer Res.67(14), 6691–6699 (2007).
  • Zhang Y , SchwartzJ, WangC: Comparative analysis of paired- and homeodomain-specific roles in PAX3–FKHR oncogenesis.Int. J. Clin. Exp. Pathol.2(4), 370–383 (2009).
  • Nishijo K , ChenQR, ZhangLet al.: Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma.Cancer Res.69(7), 2902–2911 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.