234
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Cell Cycle Perturbations in the Combination Therapy of Chemotherapeutic Agents and Radiation

, , , &
Pages 1485-1496 | Published online: 04 Oct 2010

Bibliography

  • Gregoire V , BaumannM: Combined radiotherapy and chemotherapy. In: Basic Clinical Radiobiology (4th Edition).Van der KogelA, JoinerM (Eds). Hodder Arnold, UK, 246–258 (2009).
  • Steel GG , PeckhamMJ: Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity.Int. J. Radiat. Oncol. Biol. Phys.5(1), 85–91 (1979).
  • Wouters BG , BeggA: Irradiation-induced damage and the DNA damage response. In: Basic Clinical Radiobiology (4th Edition). Van der Kogel A, JoinerM (Eds). Hodder Arnold, UK, 11–26 (2009)
  • Kastan MB , BartekJ: Cell-cycle checkpoints and cancer.Nature432(7015), 316–323 (2004).
  • DeGregori J , KowalikT, NevinsJR: Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes.Mol.Cell Biol.15(8), 4215–4224 (1995).
  • Agami R , BernardsR: Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage.Cell102(1), 55–66 (2000).
  • Bartek J , LukasC, LukasJ: Checking on DNA damage in S phase.Nat. Rev. Mol. Cell Biol.5(10), 792–804 (2004).
  • Zhu Y , AlvarezC, DollRet al.: Intra-S-phase checkpoint activation by direct CDK2 inhibition.Mol. Cell Biol.24(14), 6268–6277 (2004).
  • Zips D : Tumour growth and response to radiation. In: Basic Clinical Radiobiology (4th Edition). Van der Kogel A, JoinerM (Eds). Hodder Arnold, London, 78–101 (2009)
  • Milas L , MasonKA, LiaoZ, AngKK: Chemoradiotherapy: emerging treatment improvement strategies.Head Neck.25(2), 152–167 (2003).
  • Shah MA , SchwartzGK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy.Clin. Cancer Res.7(8), 2168–2181 (2001).
  • Terasima T , TolmachLJ: Variation in several responses of HeLa cells to X-irradiation during the division cycle.Biophys. J.3, 11–33 (1963).
  • McGinn CJ , ShewachDS, LawrenceTS: Radiosensitizing nucleosides.J. Natl Cancer Inst.88(17), 1193–1203 (1996).
  • Lawrence TS , ChangEY, HahnTM, HertelLW, ShewachS: Radiosensitization of pancreatic cancer cells by 2´,2´-difluoro-2´-deoxycytidine.Int. J. Radiat. Oncol. Biol. Phys.34(4), 867–872 (1996).
  • Shewach DS , LawrenceTS: Antimetabolite radiosensitizers.J. Clin. Oncol.25(26), 4043–4050 (2007).
  • Hwang HS , DavisTW, HoughtonJA, KinsellaTJ: Radiosensitivity of thymidylate synthase-deficient human tumor cells is affected by progression through the G1 restriction point into S-phase: implications for fluoropyrimidine radiosensitization.Cancer Res.60(1), 92–100 (2000).
  • Kuo ML , KunugiKA, LindstromMJ, KinsellaTJ: The interaction of hydroxyurea and ionizing radiation in human cervical carcinoma cells.Cancer J. Sci. Am.3(3), 163–173 (1997).
  • Pauwels B , KorstA, LardonF, VermorkenJ: Combined modality therapy of gemcitabine and radiation.Oncologist10(1), 34–51 (2005).
  • Pauwels B , KorstAEC, PattynGGOet al.: Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro.Int. J. Radiat. Oncol. Biol. Phys.57(4), 1075–1083 (2003).
  • Morgan MA , ParselsLA, MaybaumJ, LawrenceTS: Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review.Clin. Cancer Res.14(21), 6744–6750 (2008).
  • Gregoire V , VanNT, StephensLCet al.: The role of fludarabine-induced apoptosis and cell cycle synchronization in enhanced murine tumor radiation response in vivo.Cancer Res.54(23), 6201–6209 (1994).
  • Kruczynski A , BarretJM, EtievantCet al.: Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vinca alkaloid.Biochem. Pharmacol.55(5), 635–648 (1998).
  • Kruczynski A , ColpaertF, TarayreJPet al.: Preclinical in vivo antitumor activity of vinflunine, a novel fluorinated Vinca alkaloid.Cancer Chemother. Pharmacol.41(6), 437–447 (1998).
  • Edelstein MP , WolfeLA3rd, DuchDS: Potentiation of radiation therapy by vinorelbine (Navelbine) in non-small cell lung cancer.Semin. Oncol.23(2 Suppl. 5), 41–47 (1996).
  • Fukuoka K , AriokaH, IwamotoYet al.: Mechanism of the radiosensitization induced by vinorelbine in human non-small cell lung cancer cells.Lung Cancer34(3), 451–460 (2001).
  • Simoens C , LardonF, PauwelsBet al.: Comparative study of the radiosensitizing and cell cycle effects of vinflunine and vinorelbine, in vitro.BMC Cancer8, 65–77 (2008).
  • Simoens C , VermorkenJB, KorstAEet al.: Cell cycle effects of vinflunine, the most recent promising Vinca alkaloid, and its interaction with radiation, in vitro.Cancer Chemother. Pharmacol.58(2), 210–218 (2006).
  • Fukuoka K , AriokaH, IwamotoYet al.: Mechanism of vinorelbine-induced radiosensitization of human small cell lung cancer cells.Cancer Chemother. Pharmacol.49(5), 385–390 (2002).
  • Grau C , HoyerM, OvergaardJ: The in vivo interaction between vincristine and radiation in a C3H mammary carcinoma and the feet of CDF1 mice.Int. J. Radiat. Oncol. Biol. Phys.30(5), 1141–1146 (1994).
  • Milas L , MilasMM, MasonKA: Combination of taxanes with radiation: preclinical studies.Semin Radiat Oncol.9(2 Suppl. 1), 12–26 (1999).
  • Hennequin C , GiocantiN, FavaudonV: S-phase specificity of cell killing by docetaxel (Taxotere) in synchronised HeLa cells.Br. J. Cancer71(6), 1194–1198 (1995).
  • Hennequin C , GiocantiN, FavaudonV: Interaction of ionizing radiation with paclitaxel (Taxol) and docetaxel (Taxotere) in HeLa and SQ20B cells.Cancer Res.56(8), 1842–1850 (1996).
  • Kim JS , AmorinoGP, PyoHet al.: The novel taxane analogs, BMS-184476 and BMS-188797, potentiate the effects of radiation therapy in vitro and in vivo against human lung cancer cells.Int. J. Radiat. Oncol. Biol. Phys.51(2), 525–534 (2001).
  • Kawato Y , FurutaT, AonumaMet al.: Antitumor activity of a camptothecin derivative, CPT-11, against human tumor xenografts in nude mice.Cancer Chemother. Pharmacol.28(3), 192–198 (1991).
  • Rich TA : Camptothecin radiation sensitization. In: Chemoradiation in Cancer Therapy (Volume ). Choy H (Ed.). Humana Press, NJ, USA, 93–105 (2003)
  • Boothman DA , WangM, ScheaRAet al.: Posttreatment exposure to camptothecin enhances the lethal effects of x-rays on radioresistant human malignant melanoma cells.Int. J. Radiat. Oncol. Biol. Phys.24(5), 939–948 (1992).
  • Chen AY , OkunieffP, PommierY, MitchellJB: Mammalian DNA topoisomerase I mediates the enhancement of radiation cytotoxicity by camptothecin derivatives.Cancer Res.57(8), 1529–1536 (1997).
  • Minehan KJ , BonnerJA: The interaction of etoposide with radiation: variation in cytotoxicity with the sequence of treatment.Life Sci.53(15), L237–L242 (1993).
  • Giocanti N , HennequinC, BalossoJ, MahlerM, FavaudonV: DNA repair and cell cycle interactions in radiation sensitization by the topoisomerase II poison etoposide.Cancer Res.53(9), 2105–2111 (1993).
  • Shigematsu N , KawataT, IharaNet al.: Effect of combined treatment with radiation and low dose etoposide on cell survival.Anticancer Res.21(1A), 325–328 (2001).
  • Bonner JA , LawrenceTS: Doxorubicin decreases the repair of radiation-induced DNA damage.Int. J. Radiat. Biol.57(1), 55–64 (1990).
  • Byfield JE , LeeYC, TuL: Molecular interactions between adriamycin and x-ray damage in mammalian tumor cells.Int. J. Cancer19(2), 186–193 (1977).
  • Kimler BF , LeeperDB: The effect of adriamycin and radiation on G2 progression.Cancer Res.36(9 Pt 1), 3212–3216 (1976).
  • Supiot S , GouardS, CharrierJet al.: Mechanisms of cell sensitization to a radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines.Clin. Cancer Res.11(19 Pt 2), S7047–S7052 (2005).
  • Midander J , LittbrandB, EdsmyrF: Irradiation combined with bleomycin treatment of synchronized cells in culture under oxic and hypoxic conditions.Acta Radiol. Oncol.19(5), 395–400 (1980).
  • Bleehen NM , GilliesNE, TwentymanPR: The effect of bleomycin and radiation in combination on bacteria and mammalian cells in culture.Br. J. Radiol.47(558), 346–351 (1974).
  • Vanuytsel L , FengY, LanduytW, LeerJW, van der SchuerenE: The combined effect of bleomycin and irradiation on mouse lip mucosa. 2. Influence on the accumulation and repair of sublethal damage during fractionated irradiation.Radiother. Oncol.6(4), 267–273 (1986).
  • Baumann M , KrauseM, DikomeyEet al.: EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms.Radiother. Oncol.83(3), 238–248 (2007).
  • Giovannetti E , MeyV, NannizziSet al.: Cellular and pharmacogenetics foundation of synergistic interaction of pemetrexed and gemcitabine in human non-small-cell lung cancer cells.Mol. Pharmacol.68(1), 110–118 (2005).
  • Bischof M , WeberKJ, BlatterJ, WannenmacherM, LatzD: Interaction of pemetrexed disodium (Alimta, multitargeted antifolate) and irradiation in vitro.Int. J. Radiat. Oncol. Biol. Phys.52(5), 1381–1388 (2002).
  • Bischof M , HuberP, StoffregenC, WannenmacherM, WeberKJ: Radiosensitization by pemetrexed of human colon carcinoma cells in different cell cycle phases.Int. J. Radiat. Oncol. Biol. Phys.57(1), 289–292 (2003).
  • Chen YC , PandyaK, KengPCet al.: Phase I/II clinical study of pulsed paclitaxel radiosensitization for thoracic malignancy: a therapeutic approach on the basis of preclinical research of human cancer cell lines.Clin. Cancer Res.9(3), 969–975 (2003).
  • Kawabe T : G2 checkpoint abrogators as anticancer drugs.Mol. Cancer Ther.3(4), 513–519 (2004).
  • Tenzer A , PruschyM: Potentiation of DNA-damage-induced cytotoxicity by G2 checkpoint abrogators.Curr. Med. Chem. Anticancer Agents3(1), 35–46 (2003).
  • Powell SN , DeFrankJS, ConnellPet al.: Differential sensitivity of p53- and p53+ cells to caffeine-induced radiosensitization and override of G2 delay.Cancer Res.55(8), 1643–1648 (1995).
  • Bracey TS , WilliamsAC, ParaskevaC: Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.Clin. Cancer Res.3(8), 1371–1381 (1997).
  • Bunch RT , EastmanA: Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor.Clin. Cancer Res.2(5), 791–797 (1996).
  • Playle LC , HicksDJ, QualtroughD, ParaskevaC: Abrogation of the radiation-induced G2 checkpoint by the staurosporine derivative UCN-01 is associated with radiosensitisation in a subset of colorectal tumour cell lines.Br. J. Cancer87(3), 352–358 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.