1,322
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma

, &
Pages 1149-1167 | Published online: 12 Oct 2011

Bibliography

  • Bosch FX , RibesJ, DiazM, CleriesR. Primary liver cancer: worldwide incidence and trends.Gastroenterology127(5), S5–S16 (2004).
  • Jemal A , BrayF, CenterMM, FerlayJ, WardE, FormanD. Global cancer statistics.CA Cancer J. Clin.61(2), 69–90 (2011).
  • Altekruse SF , McGlynnKA, ReichmanME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005.J. Clin. Oncol.27(9), 1485–1491 (2009).
  • Yang L , ParkinDM, FerlayJ, LiLA, ChenYD. Estimates of cancer incidence in China for 2000 and projections for 2005.Cancer Epidemiol. Biomarkers Prev.14(1), 243–250 (2005).
  • Schafer DF , SorrellMF. Hepatocellular carcinoma.Lancet353(9160), 1253–1257 (1999).
  • Gomaa AI , KhanSA, ToledanoMB, WakedI, Taylor-RobinsonSD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis.World J. Gastroenterol.14(27), 4300–4308 (2008).
  • Di Bisceglie AM . Epidemiology and clinical presentation of hepatocellular carcinoma.J. Vasc. Interv. Radiol.13(9), S169–S171 (2002).
  • Block TM , MehtaAS, FimmelCJ, JordanR. Molecular viral oncology of hepatocellular carcinoma.Oncogene22(33), 5093–5107 (2003).
  • Perz JF , ArmstrongGL, FarringtonLA, HutinYJ, BellBP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide.J. Hepatol.45(4), 529–538 (2006).
  • De Mitri MS , CassiniR, MorsicaGet al. Virological analysis, genotypes and mutational patterns of the HBV precore/core gene in HBV/HCV-related hepatocellular carcinoma. J. Viral Hepat. 13(9), 574–581 (2006).
  • Benvegnu L , FattovichG, NoventaFet al. Concurrent hepatitis-B and hepatitis-C virus-infection and risk of hepatocellular-carcinoma in cirrhosis - a prospective-study. Cancer 74(9), 2442–2448 (1994).
  • Fargion S , FracanzaniAL, PipernoAet al. Prognostic factors for hepatocellular-carcinoma in genetic hemochromatosis. Hepatology 20(6), 1426–1431 (1994).
  • Caballeria L , ParesA, CastellsA, GinesA, BruC, RodesJ. Hepatocellular carcinoma in primary biliary cirrhosis. Similar incidence to that in hepatitis C virus-related cirrhosis.Am. J. Gastroenterol.96(4), 1160–1163 (2001).
  • Davila JA , MorganRO, ShaibY, McGlynnKA, El-SeragHB. Hepatitis C infection and the increasing incidence of hepatocellular carcinoma: a population-based study.Gastroenterology127(5), 1372–1380 (2004).
  • Yoo HY , PattCH, GeschwindJF, ThuluvathPJ. The outcome of liver transplantation in patients with hepatocellular carcinoma in the united states between 1987 and 2001: 5-year survival has improved significantly with time.J. Clin. Oncol.21(23), 4329–4335 (2003).
  • Vilana R , BruixJ, BruC, AyusoC, SoleM, RodesJ. Tumor size determines the efficacy of percutaneous ethanol injection for the treatment of small hepatocellular-carcinoma.Hepatology16(2), 353–357 (1992).
  • Llovet JM , RealMI, MontanaXet al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359(9319), 1734–1739 (2002).
  • Lo CM , NganH, TsoWKet al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35(5), 1164–1171 (2002).
  • Cardenes HR , PriceTR, PerkinsSMet al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin. Transl Oncol. 12(3), 218–225 (2010).
  • Krishnan S , DawsonLA, SeongJet al. Radiotherapy for hepatocellular carcinoma: an overview. Ann. Surg. Oncol. 15(4), 1015–1024 (2008).
  • Gish RG , PortaC, LazarLet al. Phase III randomized controlled trial comparing the survival of patients with unresectable hepatocellular carcinoma treated with nolatrexed or doxorubicin J. Clin. Oncol. 25(28), 4512–4512 (2007).
  • O’Dwyer PJ , GiantonioBJ, LevyDE, KauhJS, FitzgeraldDB, BensonAB. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the eastern cooperative oncology group’s study e1203.J. Clin. Oncol.24(18), 4143 (2006).
  • Ramanathan RK , BelaniCP, SinghDAet al. Phase II study of lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase 1 and 2 (Her2/Neu) in patients (pts) with advanced biliary tree cancer (BTC) or hepatocellular cancer (HCC). A california consortium (CCC-p) trial. J. Clin. Oncol. 24(18), 4010 (2006).
  • Yeo W , MokTS, ZeeBet al. A randomized Phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl Cancer Inst. 97(20), 1532–1538 (2005).
  • Endicott JA , LingV. The biochemistry of P-glycoprotein-mediated multidrug resistance.Ann. Rev. Biochem.58, 137–171 (1989).
  • Ng IOL , LiuCL, FanST, NgM. Expression of P-glycoprotein in hepatocellular carcinoma – a determinant of chemotherapy response.Am. J. Clin. Pathol.113(3), 355–363 (2000).
  • Park JG , LeeSK, HongIGet al. MDR1 gene-expression - its effect on drug-resistance to doxorubicin in human hepatocellular-carcinoma cell-lines. J. Natl Cancer Inst. 86(9), 700–705 (1994).
  • Faried LS , FariedA, KanumaTet al. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of caski cells to paclitaxel. Eur. J. Cancer 42(7), 934–947 (2006).
  • VanderWeele DJ , ZhouRX, RudinCM. AKT up-regulation increases resistance to microtubule-directed chemotherapeutic agents through mammalian target of rapamycin.Mol. Cancer Ther.3(12), 1605–1613 (2004).
  • Llovet JM , RicciS, MazzaferroVet al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008).
  • Cheng AL , KangYK, ChenZDet al. Efficacy and safety of sorafenib in patients in the asia-pacific region with advanced hepatocellular carcinoma: a Phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10(1), 25–34 (2009).
  • Aguilar F , HarrisCC, SunT, HollsteinM, CeruttiP. Geographic-variation of p53 mutational profile in nonmalignant human liver.Science264(5163), 1317–1319 (1994).
  • Hosono S , ChouMJ, LeeCS, ShihC. Infrequent mutation of p53 gene in hepatitis-B virus positive primary hepatocellular carcinomas.Oncogene8(2), 491–496 (1993).
  • Minouchi K , KanekoS, KobayashiK. Mutation of p53 gene in regenerative nodules in cirrhotic liver.J. Hepatol.37(2), 231–239 (2002).
  • Nose H , ImazekiF, OhtoM, OmataM. P53 gene-mutations and 17p allelic deletions in hepatocellular-carcinoma from Japan.Cancer72(2), 355–360 (1993).
  • Edamoto Y , HaraA, BiernatWet al. Alterations of rb1, p53 and wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int. J. Cancer 106(3), 334–341 (2003).
  • Ishizaki Y , IkedaS, FujimoriMet al. Immunohistochemical analysis and mutational analyses of β-catenin, axin family and APC genes in hepatocellular carcinomas. Int. J. Oncol. 24(5), 1077–1083 (2004).
  • Ito Y , TakedaT, SakonMet al. Expression and clinical significance of Erb-B receptor family in hepatocellular carcinoma. Br. J. Cancer 84(10), 1377–1383 (2001).
  • Santoni-Rugiu E , JensenMR, FactorVM, ThorgeirssonSS. Acceleration of c-Myc-induced hepatocarcinogenesis by co-expression of transforming growth factor (TGF)-α in transgenic mice is associated with TGF-β1 signaling disruption.Am. J. Pathol.154(6), 1693–1700 (1999).
  • Daveau M , ScotteM, FrancoisAet al. Hepatocyte growth factor, transforming growth factor α, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol. Carcinog. 36(3), 130–141 (2003).
  • Wang R , FerrellDL, FaouziS, MaherJJ, BishopJM. Activation of the met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice.J. Cell Biol.153(5), 1023–1033 (2001).
  • Feitelson MA , SunB, TufanNLS, LiuJ, PanJB, LianZR. Genetic mechanisms of hepatocarcinogenesis.Oncogene21(16), 2593–2604 (2002).
  • Kubo T , YamamotoJ, ShikauchiY, NiwaY, MatsubaraK, YoshikawaH. Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma.Cancer Res.64(15), 5172–5177 (2004).
  • Maeta Y , ShiotaG, OkanoJ, MurawakiY. Effect of promoter methylation of the p16 gene on phosphorylation of retinoblastoma gene product and growth of hepatocellular carcinoma cells.Tumor Biol.26(6), 300–305 (2005).
  • Matsuda Y , IchidaT, MatsuzawaJ, SugimuraK, AsakuraH. P16(ink4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma.Gastroenterology116(2), 394–400 (1999).
  • Murata H , TsujiS, TsujiiMet al. Promoter hypermethylation silences cyclooxygenase-2 (COX-2) and regulates growth of human hepatocellular carcinoma cells. Lab. Invest. 84(8), 1050–1059 (2004).
  • Wong CM , LeeJMF, ChingYP, JinDY, NgIOL. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma.Cancer Res.63(22), 7646–7651 (2003).
  • Wong IHN , LoYMD, ZhangJet al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 59(1), 71–73 (1999).
  • Brechot C , PourcelC, LouiseA, RainB, TiollaisP. Presence of integrated hepatitis-B virus-DNA sequences in cellular DNA of human hepatocellular-carcinoma.Nature286(5772), 533–535 (1980).
  • Murakami Y , SaigoK, TakashimaHet al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54(8), 1162–1168 (2005).
  • Minami M , DaimonY, MoriKet al. Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene 24(27), 4340–4348 (2005).
  • Wang J , ChenivesseX, HengleinB, BrechotC. Hepatitis-B virus integration in a Cyclin-A gene in a hepatocellular-carcinoma.Nature343(6258), 555–557 (1990).
  • Feitelson MA , DuanLX. Hepatitis B virus x antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma.Am. J. Pathol.150(4), 1141–1157 (1997).
  • Klein NP , SchneiderRJ. Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras.Mol. Cell. Biol.17(11), 6427–6436 (1997).
  • Shih WL , KuoML, ChuangSE, ChengAL, DoongSL. Hepatitis B virus x protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway.J. Biol. Chem.275(33), 25858–25864 (2000).
  • Balsano C , AvantaggiatiML, NatoliGet al. Full-length and truncated versions of the hepatitis-B virus (HBV) x-protein (px) transactivate the cMyc protooncogene at the transcriptional level. Biochem. Biophys. Res. Commun. 176(3), 985–992 (1991).
  • Twu JS , LaiMY, ChenDS, RobinsonWS. Activation of protooncogene c-jun by the x-protein of hepatitis-B virus.Virology192(1), 346–350 (1993).
  • Chirillo P , FalcoM, PuriPLet al. Hepatitis B virus px activates NF-kappa β-dependent transcription through a Raf-independent pathway. J. Virol. 70(1), 641–646 (1996).
  • Seto E , MitchellPJ, YenTSB. Transactivation by the hepatitis-B virus-x protein depends on AP-2 and other transcription factors.Nature344(6261), 72–74 (1990).
  • Lee JO , KwunHJ, JungJK, ChoiKH, MinDS, JangKL. Hepatitis B virus x protein represses E-cadherin expression via activation of DNA methyltransferase 1.Oncogene24(44), 6617–6625 (2005).
  • Arzumanyan A , FriedmanT, KoteiE, NgIO, LianZ, FeitelsonMA. Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer.Oncogene doi: 10.1038/onc.2011.255 (2011) (Epub ahead of print).
  • Lee YH , YunYD. Hbx protein of hepatitis B virus activates JAK1–STAT signaling.J. Biol. Chem.273(39), 25510–25515 (1998).
  • Benn J , SchneiderRJ. Hepatitis-B virus HBx protein activates Ras-GTP complex-formation and establishes a Ras, Raf, MAP kinase signaling cascade.Proc. Natl Acad. Sci. USA91(22), 10350–10354 (1994).
  • Park US , ParkSK, LeeYI, ParkJG, LeeYI. Hepatitis B virus-x protein upregulates the expression of p21(waf1/cip1) and prolongs g1 -> s transition via a p53-independent pathway in human hepatoma cells.Oncogene19(30), 3384–3394 (2000).
  • Cha MY , KimCM, ParkYM, RyuWS. Hepatitis B virus x protein is essential for the activation of wnt/β-catenin signaling in hepatoma cells.Hepatology39(6), 1683–1693 (2004).
  • Lee YI , Kang-ParkS, DoSI, LeeYI. The hepatitis B virus-x protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade.J. Biol. Chem.276(20), 16969–16977 (2001).
  • Bader AG , KangSY, ZhaoL, VogtPK. Oncogenic PI3K deregulates transcription and translation.Nat. Rev. Cancer5(12), 921–929 (2005).
  • Engelman JA , LuoJ, CantleyLC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.Nat. Rev. Genet.7(8), 606–619 (2006).
  • Vivanco I , SawyersCL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer.Nat. Rev. Cancer2(7), 489–501 (2002).
  • Yap TA , GarrettMD, WaltonMI, RaynaudF, De BonoJS, WorkmanP. Targeting the PI3K–AKT–mTor pathway. Progress, pitfalls, and promises.Curr. Opin Pharmacol.8(4), 393–412 (2008).
  • Dunlop EA , TeeAR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms.Cell. Signal.21(6), 827–835 (2009).
  • Mamane Y , PetroulakisE, LebacquerO, SonenbergN. mTOR, translation initiation and cancer.Oncogene25(48), 6416–6422 (2006).
  • Freeburn RW , WrightKL, BurgessSJ, AstoulE, CantrellDA, WardSG. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors.J. Immunol.169(10), 5441–5450 (2002).
  • Miao BC , SkidanI, YangJSet al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc. Natl Acad. Sci. USA 107(46), 20126–20131 (2010).
  • Ding L , GetzG, WheelerDAet al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216), 1069–1075 (2008).
  • Samuels Y , WangZH, BardelliAet al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670), 554–554 (2004).
  • Thomas RK , BakerAC, DebiasiRMet al. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39(3), 347–351 (2007).
  • Wood LD , ParsonsDW, JonesSet al. The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007).
  • Benistant C , ChapuisH, RocheS. A specific function for phosphatidylinositol 3-kinase α (p85 α-p110 α) in cell survival and for phosphatidylinositol 3-kinase β (p85 α-p110 β) in de novo DNA synthesis of human colon carcinoma cells.Oncogene19(44), 5083–5090 (2000).
  • Brugge J , HungMC, MillsGB. A new mutational AKTivation in the PI3K pathway.Cancer Cell12(2), 104–107 (2007).
  • Li Y , TianZ, FuB, XinY. LOH on 10.23.3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions.Ann. Oncol.19, 43–43 (2008).
  • Cully M , YouH, LevineAJ, MakTW. Beyond PTEN mutations. The PI3K pathway as an integrator of multiple inputs during tumorigenesis.Nat. Rev. Cancer6(3), 184–192 (2006).
  • Feilotter HE , CoulonV, McVeighJLet al. Analysis of the 10.23 chromosomal region and the PTEN gene in human sporadic breast carcinoma. Br. J. Cancer 79(5–6), 718–723 (1999).
  • Gray IC , StewartLMD, PhillipsSMAet al. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br. J. Cancer 78(10), 1296–1300 (1998).
  • Bellacosa A , DefeoD, GodwinAKet al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64(4), 280–285 (1995).
  • Bleeker FE , FelicioniL, ButtittaFet al. AKT1(E17K) in human solid tumours. Oncogene 27(42), 5648–5650 (2008).
  • Malanga D , ScrimaM, De MarcoCet al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 7(5), 665–669 (2008).
  • Sahin F , KannangaiR, AdegbolaO, WangJZ, SuG, TorbensonM. mTOR and P70S6 kinase expression in primary liver neoplasms.Clin. Cancer Res.10(24), 8421–8425 (2004).
  • Villanueva A , ChiangDY, NewellPet al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135(6), 1972–1983 (2008).
  • Sieghart W , FuerederT, SchmidKet al. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation 83(4), 425–432 (2007).
  • Zhou LD , HuangY, LiJD, WangZM. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma.Med. Oncol.27(2), 255–261 (2010).
  • Tavian D , De PetroG, BenettiA, PortolaniN, GiuliniSM, BarlatiS. u-PA and c-Met mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma.Int. J. Cancer87(5), 644–649 (2000).
  • Sakata H , TakayamaH, SharpR, RubinJS, MerlinoG, LarochelleWJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers.Cell Growth Differ.7(11), 1513–1523 (1996).
  • Tovar V , AlsinetC, VillanuevaAet al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J. Hepatol. 52(4), 550–559 (2010).
  • Mannova P , BerettaL. Activation of the N-Ras–PI3K–AKT–mTOR pathway by hepatitis C virus: control of cell survival and viral replication.J. Virol.79(14), 8742–8749 (2005).
  • Neef M , LedermannM, SaegesserH, SchneiderV, ReichenJ. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis.J. Hepatol.45(6), 786–796 (2006).
  • Bader AG , KangSY, VogtPK. Cancer-specific mutations in PIK3CA are oncogenic in vivo.Proc. Natl Acad. Sci. USA103(5), 1475–1479 (2006).
  • Samuels Y , DiazLA, Schmidt-KittlerOet al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6), 561–573 (2005).
  • Zhao JJ , LiuZN, WangL, ShinE, LodaMF, RobertsTM. The oncogenic properties of mutant p110 α and p110 β phosphatidylinositol 3-kinases in human mammary epithelial cells.Proc. Natl Acad. Sci. USA102(51), 18443–18448 (2005).
  • Lemke LE , Paine-MurrietaGD, TaylorCW, PowisG. Wortmannin inhibits the growth of mammary tumors despite the existence of a novel wortmannin-insensitive phosphatidylinositol-3-kinase.Cancer Chemother. Pharmacol.44(6), 491–497 (1999).
  • Hu LM , ZaloudekC, MillsGB, GrayJ, JaffeRB. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002).Clin. Cancer Res.6(3), 880–886 (2000).
  • Amaravadi R , ThompsonCB. The survival kinases AKT and PIM as potential pharmacological targets.J. Clin. Invest.115(10), 2618–2624 (2005).
  • Knight ZA , GonzalezB, FeldmanMEet al. A pharmacological map of the PI3-K family defines a role for p110 α in insulin signaling. Cell 125(4), 733–747 (2006).
  • Marone R , CmijanovicV, GieseB, WymannMP. Targeting phosphoinositide 3-kinase - moving towards therapy.Iochim. Biophys. Acta1784(1), 159–185 (2008).
  • Fan QW , KnightZA, GoldenbergDDet al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9(5), 341–349 (2006).
  • Ladu S , CalvisiDF, ConnerEA, FarinaM, FactorVM, ThorgeirssonSS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/AKT/mTOR and COX-2 in a mouse model of human liver cancer.Gastroenterology135(4), 1322–1332 (2008).
  • Flinn IW , ByrdJC, FurmanRRet al. Preliminary evidence of clinical activity in a Phase I study of CAL-101, a selective inhibitor of the p1108 isoform of phosphatidylinositol 3-kinase (P13K), in patients with select hematologic malignancies. J. Clin. Oncol. 27(15), 3543 (2009).
  • Jimeno A , HongDS, HeckerSet al. Phase I trial of PX-866, a novel phosphoinositide-3-kinase (PI-3K) inhibitor. J. Clin. Oncol. 27(15), 3542 (2009).
  • Wagner AJ , Von HoffDH, LorussoPMet al. A first-in-human Phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. J. Clin. Oncol. 27(15), 3501 (2009).
  • Hilgard P , KlennerT, StekarJ, NossnerG, KutscherB, EngelJ. D-21266, a new heterocyclic alkylphospholipid with antitumour activity.Eur. J. Cancer33(3), 442–446 (1997).
  • Van Ummersen L , BingerK, VolkmanJet al. A Phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res. 10(22), 7450–7456 (2004).
  • Campos LT , NemunaitisJ, StephensonJet al. Phase II study of single agent perifosine in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol. 27(15), e15505 (2009).
  • Tolcher AW , YapTA, FearenIet al. A Phase I study of MK-2206, an oral potent allosteric AKT inhibitor (AKTi), in patients (pts) with advanced solid tumor (ST). J. Clin. Oncol. 27(15), 3503 (2009).
  • Chen KF , ChenHL, TaiWTet al. Activation of PI3K/AKT signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells J. Pharmacol. Exp. Ther. 337(1), 155–161 (2011).
  • Vezina C , KudelskiA, SehgalSN. Rapamycin (AY-22,989), a new antifungal antibiotic .1. Taxonomy of producing streptomycete and isolation of active principle.J. Antibiot. (Tokyo)28(10), 721–726 (1975).
  • Yatscoff RW , LegattDF, KnetemanNM. Therapeutic monitoring of rapamycin: a new immunosuppressive drug.Ther. Drug Monit.15(6), 478–482 (1993).
  • Faivre S , KroemerG, RaymondE. Current development of mTOR inhibitors as anticancer agents.Nat. Rev. Drug Discov.5(8), 671–688 (2006).
  • Guertin DA , SabatiniDM. Defining the role of mTOR in cancer.Cancer Cell12(1), 9–22 (2007).
  • Hay N . The AKT–mTOR tango and its relevance to cancer.Cancer Cell8(3), 179–183 (2005).
  • Sabatini DM . mTOR and cancer: insights into a complex relationship.Nat. Rev. Cancer6(9), 729–734 (2006).
  • Atkins MB , HidalgoM, StadlerWMet al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22(5), 909–918 (2004).
  • Blaszkowsky LS , AbramsTA, MiksadRAet al. Phase I/II study of everolimus in patients with advanced hepatocellular carcinoma (HCC). ASCO Annual Meeting, Chicago, IL, USA, 4–8 June (2010).
  • Kelley RK , NimeiriHS, VergoMTet al. A Phase I trial of the combination of temsirolimus (TEM) and sorafenib (SOR) in advanced hepatocellular carcinoma (HCC). Gastrointestinal Cancer Symposium. San Francisco, CA, 20–22 January 2011.
  • Campsen J , ZimmermanMA, MandellS, KaplanM, KamI. A decade of experience using mTOR inhibitors in liver transplantation.J. Transplant.2011, 913094 (2011).
  • Levy G , SchmidliH, PunchJet al. Safety, tolerability, and efficacy of everolimus in de novo liver transplant recipients: 12-and 36-month results. Liver Transplant. 12(11), 1640–1648 (2006).
  • Roberts RJ , WellsAC, UnittEet al. Sirolimus-induced pneumonitis following liver transplantation. Liver Transplant. 13(6), 853–856 (2007).
  • Montalbano M , NeffGW, YamashikiNet al. A retrospective review of liver transplant patients treated with sirolimus from a single center: an analysis of sirolimus-related complications. Transplantation 78(2), 264–268 (2004).
  • Toso C , MeebergGA, BigamDLet al. De novo sirolimus-based immunosuppression after liver transplantation for hepatocellular carcinoma: long-term outcomes and side effects. Transplantation 83(9), 1162–1168 (2007).
  • Kneteman NM , OberholzerJ, Al SaghierMet al. Sirolimus-based immunosuppression for liver transplantation in the presence of extended criteria for hepatocellular carcinoma. Liver Transplant. 10(10), 1301–1311 (2004).
  • Schnitzbauer AA , ZuelkeC, GraebCet al. A prospective randomised, open-labeled, trial comparing sirolimus-containing versus mTOR-inhibitor-free immunosuppression in patients undergoing liver transplantation for hepatocellular carcinoma. BMC Cancer 10, 190 (2010).
  • Sarbassov DD , GuertinDA, AliSM, SabatiniDM. Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex.Science307(5712), 1098–1101 (2005).
  • Shah OJ , WangZY, HunterT. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies.Curr. Biol.14(18), 1650–1656 (2004).
  • Feldman ME , ApselB, UotilaAet al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7(2), 371–383 (2009).
  • Thoreen CC , KangSA, ChangJWet al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284(12), 8023–8032 (2009).
  • Chresta CM , DaviesBR, HicksonIet al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70(1), 288–298 (2010).
  • Zhao JJ , ChengHL, JiaSDet al. The p110 α isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc. Natl Acad. Sci. USA 103(44), 16296–16300 (2006).
  • Guillermet-Guibert J , BjorklofK, SalpekarAet al. The p110 β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110 γ. Proc. Natl Acad. Sci. USA 105(24), 8292–8297 (2008).
  • O’Reilly KE , RojoF, SheQBet al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates AKT. Cancer Res. 66(3), 1500–1508 (2006).
  • Cloughesy TF , YoshimotoK, NghiemphuPet al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5(1), 139–151 (2008).
  • Maira SM , StaufferF, BrueggenJet al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7(7), 1851–1863 (2008).
  • Serra V , MarkmanB, ScaltritiMet al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68(19), 8022–8030 (2008).
  • Buchbinder EI , CohenMB, JungDEet al. In vitro efficacy of the dual PI3-Kinase/mTOR inhibitor NVP-BEZ235 in hepatocellular carcinoma. Molecular Cancer Therapeutics. 8(12 Suppl. 1), C60 (2009).
  • Liu PX , ChengHL, RobertsTM, ZhaoJJ. Targeting the phosphoinositide 3-kinase pathway in cancer.Nat. Rev. Drug Discov.8(8), 627–644 (2009).
  • Ma WW , AdjeiAA. Novel agents on the horizon for cancer therapy.CA Cancer J. Clin.59(2), 111–137 (2009).
  • Chiorean EG , MahadevanD, HarrisWBet al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. J. Clin. Oncol. 27(15), 2558 (2009).
  • Moelling K , SchadK, BosseM, ZimmermannS, SchwenekerM. Regulation of Raf–AKT cross-talk.J. Biol. Chem.277(34), 31099–31106 (2002).
  • Carracedo A , MaL, Teruya-FeldsteinJet al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118(9), 3065–3074 (2008).
  • Raynaud FI , EcclesS, ClarkePAet al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 67(12), 5840–5850 (2007).
  • Beuvink I , BoulayA, FumagalliSet al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120(6), 747–759 (2005).
  • Mondesire WH , JianWG, ZhangHXet al. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res. 10(20), 7031–7042 (2004).
  • Wu LC , BirleDC, TannockIF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts.Cancer Res.65(7), 2825–2831 (2005).
  • Yan HJ , FrostP, ShiYJet al. Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res. 66(4), 2305–2313 (2006).
  • Tam KH , YangZF, LauCK, LamCT, PangRWC, PoonRTP. Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma.Cancer Lett.273(2), 201–209 (2009).
  • Piguet AC , SemelaD, KeoghAet al. Inhibition of mTOR in combination with doxorubicin in an experimental model of hepatocellular carcinoma. J. Hepatol. 49(1), 78–87 (2008).
  • Bu XX , LeC, JiaFQet al. Synergistic effect of mTOR inhibitor rapamycin and fluorouracil in inducing apoptosis and cell senescence in hepatocarcinoma cells. Cancer Biol. Ther. 7(3), 392–396 (2008).
  • Patil MA , ChuaMS, PanKHet al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene 24(23), 3737–3747 (2005).
  • Tung CY , JenCH, HsuMT, WangHW, LinCH. A novel regulatory event-based gene set analysis method for exploring global functional changes in heterogeneous genomic data sets.BMC Genomics10, (2009).
  • Nowak AK , ChowPKH, FindlayM. Systemic therapy for advanced hepatocellular carcinoma: a review.Eur. J. Cancer40(10), 1474–1484 (2004).
  • Nies AT , KonigJ, PfannschmidtM, KlarE, HofmannWJ, KepplerD. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma.Int. J. Cancer94(4), 492–499 (2001).
  • Chao Y , ChanWK, BirkhoferMJet al. Phase II and pharmacokinetic study of paclitaxel therapy for unresectable hepatocellular carcinoma patients. Br. J. Cancer 78(1), 34–39 (1998).
  • Hebbar M , ErnstO, CattanSet al. Phase II trial of docetaxel therapy in patients with advanced hepatocellular carcinoma. Oncology 70(2), 154–158 (2006).
  • Szebeni J , AlvingCR, SavaySet al. Formation of complement-activating particles in aqueous solutions of taxol: possible role in hypersensitivity reactions. Int. Immunopharmacol. 1(4), 721–735 (2001).
  • Gelderblom H , VerweijJ, NooterK, SparreboomA. Cremophor EL. The drawbacks and advantages of vehicle selection for drug formulation.Eur. J. Cancer37(13), 1590–1598 (2001).
  • Green MR , ManikhasGM, OrlovSet al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 17(8), 1263–1268 (2006).
  • Zhou Q , ChingAK, LeungWKet al. Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int. J. Oncol. 38(3), 721–731 (2011).
  • Blum JL , SavinMA, EdelmanGet al. Phase II study of weekly albumin-bound paclitaxel for patients with metastatic breast cancer heavily pretreated with taxanes. Clin. Breast Cancer 7(11), 850–856 (2007).
  • Marimpietri D , BrignoleC, NicoBet al. Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis. Clin. Cancer Res. 13(13), 3977–3988 (2007).
  • Campostrini N , MarimpietriD, TotoloAet al. Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics 6(15), 4420–4431 (2006).
  • Shafer A , ZhouCX, GehrigPA, BoggessJF, Bae-JumpVL. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis.Int. J. Cancer126(5), 1144–1154 (2010).
  • Haritunians T , MoriA, O’KellyJ, LuongQT, GilesFJ, KoefflerHP. Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma.Leukemia21(2), 333–339 (2007).
  • Sessa C , TosiD, ViganoLet al. Phase Ib study of weekly mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) with weekly paclitaxel. Ann. Oncol. 21(6), 1315–1322 (2010).
  • Ribatti D , NicoB, MangieriDet al. In vivo inhibition of human hepatocellular carcinoma related angiogenesis by vinblastine and rapamycin. Histol. Histopathol. 22(3), 285–289 (2007).
  • Yu K , Toral-BarzaL, ShiC, ZhangWG, ZaskA. Response and determinants of cancer cell susceptibility to PI3K inhibitors.Cancer Biol. Ther.7(2), 307–315 (2008).
  • Ito Y , SasakiY, HarimotoMet al. Activation of mitogen-activated protein kinase extracellular signal-regulated protein kinase in human hepatocellular carcinoma. Hepatology 26(4), 1002–1002 (1997).
  • Schmidt CM , MckillopIH, CahillPA, SitzmannJV. Increased MAPK expression and activity in primary human hepatocellular carcinoma.Biochem. Biophys. Res. Commun.236(1), 54–58 (1997).
  • Saini KS , Piccart-GebhartMJ. Dual targeting of the PI3K and MAPK pathways in breast cancer.Asia-Pacific Journal of Oncology & Hematology2(2), 13–17(2010).
  • Kinkade CW , Castillo-MartinM, Puzio-KuterAet al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J. Clin. Invest. 118(9), 3051–3064 (2008).
  • Lasithiotakis KG , SinnbergTW, SchittekBet al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J. Invest. Dermatol. 128(8), 2013–2023 (2008).
  • Liu L , CaoYC, ChenCet al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006).
  • Wang Z , ZhouJ, FanJet al. Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin. Cancer Res. 14(16), 5124–5130 (2008).
  • Shinohara ET , CaoC, NiermannKet al. Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24(35), 5414–5422 (2005).
  • Albert JM , KimKW, CaoC, LuB. Targeting the AKT/mammalian target of rapamycin pathway for radiosensitization of breast cancer.Mol. Cancer Ther.5(5), 1183–1189 (2006).
  • Manegold PC , ParingerC, KulkaUet al. Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (everolimus) increases radiosensitivity in solid cancer. Clin. Cancer Res. 14(3), 892–900 (2008).
  • Pang RWC , PoonRTP. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now.Oncology72, 30–44 (2007).
  • Llovet JM , BruixJ. Molecular targeted therapies in hepatocellular carcinoma.Hepatology48(4), 1312–1327 (2008).
  • Tanaka S , AriiS. Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategiesJ. Gastroenterol.46(3), 289–296 (2011).
  • Buontempo F , ErsahinT, MissiroliSet al. Inhibition of AKT signaling in hepatoma cells induces apoptotic cell death independent of AKT activation status. Invest. New Drugs (2010) (Epub ahead of print).
  • Schoniger-Hekele M , MullerC. Pilot study: rapamycin in advanced hepatocellular carcinoma.Aliment. Pharmacol. Ther.32(6), 763–768 (2010).
  • Na GC , TimasheffSN. Thermodynamic linkage between tubulin self-association and the binding of vinblastine.Biochemistry19(7), 1355–1365 (1980).
  • Plosker GL , FiggittDP. Rituximab: a review of its use in non-hodgkin’s lymphoma and chronic lymphocytic leukaemia.Drugs63(8), 803–843 (2003).
  • Sandler AB . Chemotherapy for small cell lung cancer.Semin. Oncol.30(1), 9–25 (2003).
  • Jassem J , KosmidisP, RamlauRet al. Oral vinorelbine in combination with cisplatin. A novel active regimen in advanced non-small-cell lung cancer. Ann. Oncol. 14(11), 1634–1639 (2003).
  • Seidman AD . Monotherapy options in the management of metastatic breast cancer.Semin. Oncol.30(2), 6–10 (2003).
  • Okouneva T , HillBT, WilsonL, JordanMA. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics.Mol. Cancer Ther.2(5), 427–436 (2003).
  • Panda D , AnanthnarayanV, LarsonG, ShihC, JordanMA, WilsonL. Interaction of the antitumor compound cryptophycin-52 with tubulin.Biochemistry39(46), 14121–14127 (2000).
  • Towle MJ , SalvatoKA, BudrowJet al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogs of halichondrin B. Cancer Res. 61(3), 1013–1021 (2001).
  • Loganzo F , DiscafaniCM, AnnableTet al. HTI-286, a synthetic analog of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 63(8), 1838–1845 (2003).
  • Hamel E . Natural-products which interact with tubulin in the vinca domain: maytansine, rhizoxin, phomopsin a, dolastatin 10 and dolastatin 15 and halichondrin B.Pharmacol. Ther.55(1), 31–51 (1992).
  • Manfredi JJ , ParnessJ, HorwitzSB. Taxol binds to cellular microtubules.J. Cell Biol.94(3), 688–696 (1982).
  • Belani CP , LangerC. First-line chemotherapy for NSCLC: an overview of relevant trials.Lung Cancer38, S13–S19 (2002).
  • Bollag DM , McQueneyPA, ZhuJet al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55(11), 2325–2333 (1995).
  • Honore S , KamathK, BraguerD, WilsonL, BriandC, JordanMA. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.Mol. Cancer Ther.2(12), 1303–1311 (2003).
  • Skoufias DA , WilsonL. Mechanism of inhibition of microtubule polymerization by colchicines: inhibitory potencies of unliganded colchicine and tubulin colchicine complexes.Biochemistry31(3), 738–746 (1992).
  • Tozer GM , KanthouC, ParkinsCS, HillSA. The biology of the combretastatins as tumour vascular targeting agents.Int. J. Experimental Pathology83(1), 21–38 (2002).
  • Lakhani NJ , SarkarMA, VenitzJ, FiggWD. 2-methoxyestradiol, a promising anticancer agent.Pharmacotherapy23(2), 165–172 (2003).
  • Yoshimatsu K , YamaguchiA, YoshinoH, KoyanagiN, KitohK. Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin.Cancer Res.57(15), 3208–3213 (1997).
  • Panda D , MillerHP, IslamK, WilsonL. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action.Proc. Natl Acad. Sci. USA94(20), 10560–10564 (1997).
  • Jordan MA , WilsonL. Microtubules as a target for anticancer drugs.Nat. Rev. Cancer4(4), 253–265 (2004).
  • Martelli AM , ChiariniF, EvangelistiCet al. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol. Histopathol. 25(5), 669–680 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.