144
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody, T-cell and Dendritic Cell Immunotherapy for Malignant Brain Tumors

, , , &
Pages 977-990 | Published online: 03 Jul 2013

References

  • Bailey P , CushingHA. A classification of tumours of the glioma group on a histogenetic basis with a correlated study of prognosis.Br. J. Surg.14(55), 554–555 (1926).
  • Louis DN , GusellaJF. A tiger behind many doors: multiple genetic pathways to malignant glioma.Trends Genet.11(10), 412–415 (1995).
  • Stupp R , HegiME, MasonWPet al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC–NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
  • Friedman HS , PradosMD, WenPYet al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27(28), 4733–4740 (2009).
  • Pachter JS , De VriesHE, FabryZ. The blood–brain barrier and its role in immune privilege in the central nervous system.J. Neuropathol. Exp. Neurol.62(6), 593–604 (2003).
  • Fabry Z , RaineCS, HartMN. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS.Immunol. Today15(5), 218–224 (1994).
  • Lampson LA , HickeyWF. Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from “histologically normal” to that showing different levels of glial tumor involvement.J. Immunol.136(11), 4054–4062 (1986).
  • Tambur AR . Transplantation immunology and the central nervous system.Neurol. Res.26(3), 243–255 (2004).
  • Hickey WF , HsuBL, KimuraH. T-lymphocyte entry into the central nervous system.J. Neurosci. Res.28(2), 254–260 (1991).
  • Perry VH , AnthonyDC, BoltonSJ, BrownHC. The blood–brain barrier and the inflammatory response.Mol. Med. Today3(8), 335–341 (1997).
  • Goldmann J , KwidzinskiE, BrandtC, MahloJ, RichterD, BechmannI. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa.J. Leukoc. Biol.80(4), 797–801 (2006).
  • Calzascia T , MassonF, Di Berardino-BessonWet al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22(2), 175–184 (2005).
  • Serot JM , FoliguetB, BeneMC, FaureGC. Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium.Neuroreport8(8), 1995–1998 (1997).
  • Yang I , HanSJ, KaurG, CraneC, ParsaAT. The role of microglia in central nervous system immunity and glioma immunology.J. Clin. Neurosci.17(1), 6–10 (2010).
  • Freund J . Accumulation of antibodies in the central nervous system.J. Exp. Med.51(6), 889–902 (1930).
  • Bullard DE , BignerDD. Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumors.J. Neurosurg.63(1), 2–16 (1985).
  • Plate KH , BreierG, WeichHA, RisauW. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo.Nature359(6398), 845–848 (1992).
  • Raizer JJ , GrimmS, ChamberlainMCet al. A Phase 2 trial of single-agent bevacizumab given in an every-3-week schedule for patients with recurrent high-grade gliomas. Cancer 116(22), 5297–5305 (2010).
  • Norden AD , YoungGS, SetayeshKet al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10), 779–787 (2008).
  • Vredenburgh JJ , DesjardinsA, HerndonJE2ndet al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25(30), 4722–4729 (2007).
  • Gutin PH , IwamotoFM, BealKet al. Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 75(1), 156–163 (2009).
  • Calabrese C , PoppletonH, KocakMet al. A perivascular niche for brain tumor stem cells. Cancer Cell 11(1), 69–82 (2007).
  • Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.Science307(5706), 58–62 (2005).
  • Jain RK , Di TomasoE, DudaDG, LoefflerJS, SorensenAG, BatchelorTT. Angiogenesis in brain tumours.Nat. Rev. Neurosci.8(8), 610–622 (2007).
  • Arita N , HayakawaT, IzumotoSet al. Epidermal growth factor receptor in human glioma. J. Neurosurg. 70(6), 916–919 (1989).
  • Friedlander E , BarokM, SzollosiJ, VerebG. ErbB-directed immunotherapy: antibodies in current practice and promising new agents.Immunol. Lett.116(2), 126–140 (2008).
  • Hasselbalch B , LassenU, HansenSet al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a Phase II trial. Neuro Oncol. 12(5), 508–516 (2010).
  • Neyns B , SadonesJ, JoosensEet al. Stratified Phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann. Oncol. 20(9), 1596–1603 (2009).
  • Cloughesy TF , PradosMD, WenPYet al. A Phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J. Clin. Oncol. 26(91S), Abstract 2010b (2008).
  • Bode U , BuchenM, Warmuth-MetzMet al. Final report of a Phase II trial of nimotuzumab in the treatment of refractory and relapsed highgrade gliomas in children and adolescents. J. Clin. Oncol. 24(Suppl. 18), 1522 (2006).
  • Ramos TC , FigueredoJ, CatalaMet al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a Phase I/II trial. Cancer Biol. Ther. 5(4), 375–379 (2006).
  • Humphrey PA , WongAJ, VogelsteinBet al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA 87(11), 4207–4211 (1990).
  • Sampson JH , CrottyLE, LeeSet al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc. Natl Acad. Sci. USA 97(13), 7503–7508 (2000).
  • Perera RM , NaritaY, FurnariFBet al. Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptor-specific antibody generates enhanced antitumor activity. Clin. Cancer Res. 11(17), 6390–6399 (2005).
  • Verhaak RG , HoadleyKA, PurdomEet al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010).
  • Loizos N , XuY, HuberJet al. Targeting the platelet-derived growth factor receptor alpha with a neutralizing human monoclonal antibody inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol. Cancer Ther. 4(3), 369–379 (2005).
  • Bourdon MA , WikstrandCJ, FurthmayrH, MatthewsTJ, BignerDD. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody.Cancer Res.43(6), 2796–2805 (1983).
  • Reardon DA , AkabaniG, ColemanREet al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J. Clin. Oncol. 24(1), 115–122 (2006).
  • Riva P , FranceschiG, FrattarelliMet al. 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma – Phase I and II study. Acta Oncol.38(3), 351–359 (1999).
  • Riva P , FranceschiG, RivaN, CasiM, SantimariaM, AdamoM. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach.Eur. J. Nucl. Med.27(5), 601–609 (2000).
  • Petronzelli F , PellicciaA, AnastasiAMet al. Improved tumor targeting by combined use of two antitenascin antibodies. Clin. Cancer Res. 11(19 Pt 2), 7137s–7145s (2005).
  • Reardon DA , AkabaniG, ColemanREet al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 20(5), 1389–1397 (2002).
  • Casaco A , LopezG, GarciaIet al. Phase I single-dose study of intracavitary-administered nimotuzumab labeled with 188Re in adult recurrent high-grade glioma. Cancer Biol. Ther. 7(3), 333–339 (2008).
  • Yang W , WuG, BarthRFet al. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin. Cancer Res. 14(3), 883–891 (2008).
  • Kurpad SN , ZhaoXG, WikstrandCJ, BatraSK, MclendonRE, BignerDD. Tumor antigens in astrocytic gliomas.Glia15(3), 244–256 (1995).
  • Cokgor I , AkabaniG, FriedmanHSet al. Long term response in a patient with neoplastic meningitis secondary to melanoma treated with (131)I-radiolabeled antichondroitin proteoglycan sulfate Mel-14 F(ab´)(2): a case study. Cancer 91(9), 1809–1813 (2001).
  • Recht L , TorresCO, SmithTW, RasoV, GriffinTW. Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy.J. Neurosurg.72(6), 941–945 (1990).
  • Recht LD , GriffinTW, RasoV, SalimiAR. Potent cytotoxicity of an antihuman transferrin receptor-ricin A-chain immunotoxin on human glioma cells in vitro.Cancer Res.50(20), 6696–6700 (1990).
  • Martell LA , AgrawalA, RossDA, MuraszkoKM. Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors.Cancer Res.53(6), 1348–1353 (1993).
  • Laske DW , IlercilO, AkbasakA, YouleRJ, OldfieldEH. Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice.J. Neurosurg.80(3), 520–526 (1994).
  • Lorimer IA , WikstrandCJ, BatraSK, BignerDD, PastanI. Immunotoxins that target an oncogenic mutant epidermal growth factor receptor expressed in human tumors.Clin. Cancer Res.1(8), 859–864 (1995).
  • Archer GE , SampsonJH, LorimerIAet al. Regional treatment of epidermal growth factor receptor vIII-expressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin. Cancer Res. 5(9), 2646–2652 (1999).
  • Beers R , ChowdhuryP, BignerD, PastanI. Immunotoxins with increased activity against epidermal growth factor receptor vIII-expressing cells produced by antibody phage display.Clin. Cancer Res.6(7), 2835–2843 (2000).
  • Kuan CT , WakiyaK, DowellJMet al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin. Cancer Res. 12(7 Pt 1), 1970–1982 (2006).
  • Kuan CT , WakiyaK, KeirSTet al. Affinity-matured anti-glycoprotein NMB recombinant immunotoxins targeting malignant gliomas and melanomas. Int. J. Cancer 129(1), N (2011).
  • Hjortland GO , Garman-VikSS, JuellSet al. Immunotoxin treatment targeted to the high-molecular-weight melanoma-associated antigen prolonging the survival of immunodeficient rats with invasive intracranial human glioblastoma multiforme. J. Neurosurg. 100(2), 320–327 (2004).
  • Ayriss J , ReisfeldR, KuanC-T, KeirS, PastanI, BignerDD. Mel-14 and 9.2.27 immunotoxins: promising therapeutics for pediatric glioma. Presented at:2011 Pediatric Neuro-Oncology Basic and Translational Research Conference. New Orleans, LA, USA, 19–20 May 2011.
  • Dudley ME , WunderlichJR, RobbinsPFet al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Morgan RA , DudleyME, WunderlichJRet al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796), 126–129 (2006).
  • Johnson LA , MorganRA, DudleyMEet al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3), 535–546 (2009).
  • Parkhurst MR , YangJC, LanganRCet al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19(3), 620–626 (2011).
  • Robbins PF , MorganRA, FeldmanSAet al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29(7), 917–924 (2011).
  • Eshhar Z , WaksT, GrossG, SchindlerDG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc. Natl Acad. Sci. USA90(2), 720–724 (1993).
  • Chekmasova AA , RaoTD, NikhaminYet al. Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin. Cancer Res. 16(14), 3594–3606 (2010).
  • Kochenderfer JN , YuZ, FrasheriD, RestifoNP, RosenbergSA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.Blood116(19), 3875–3886 (2010).
  • Zhao Y , WangQJ, YangSet al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183(9), 5563–5574 (2009).
  • Ahmed N , SalsmanVS, KewYet al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res. 16(2), 474–485 (2010).
  • Kahlon KS , BrownC, CooperLJ, RaubitschekA, FormanSJ, JensenMC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells.Cancer Res.64(24), 9160–9166 (2004).
  • Morgan RA , JohnsonLA, DavisJet al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene Ther. 23(10), 1043–1053 (2012).
  • Chow KK , NaikS, KakarlaSet al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol. Ther. 21(3), 629–637 (2012).
  • Brown CE , StarrR, AguilarBet al. Stem-like tumor-initiating cells isolated from IL13Ralpha2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells. Clin. Cancer Res. 18(8), 2199–2209 (2012).
  • Kong S , SenguptaS, TylerBet al. Suppression of human glioma xenografts with second-generation IL13Rspecific chimeric antigen receptor-modified T cells. Clin. Cancer Res. 18(21), 5949–5960 (2012).
  • Chinnasamy D , YuZ, TheoretMRet al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120(11), 3953–3968 (2010).
  • Pule MA , SavoldoB, MyersGDet al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14(11), 1264–1270 (2008).
  • Lamers CH , GratamaJW, PouwNMet al. Parallel detection of transduced T lymphocytes after immunogene therapy of renal cell cancer by flow cytometry and real-time polymerase chain reaction: implications for loss of transgene expression. Hum. Gene Ther. 16(12), 1452–1462 (2005).
  • Morgan RA , YangJC, KitanoM, DudleyME, LaurencotCM, RosenbergSA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.Mol. Ther.18(4), 843–851 (2010).
  • Kochenderfer JN , DudleyME, FeldmanSAet al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12), 2709–2720 (2012).
  • Porter DL , LevineBL, KalosM, BaggA, JuneCH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.N. Engl. J. Med.365(8), 725–733 (2011).
  • Till BG , JensenMC, WangJet al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112(6), 2261–2271 (2008).
  • Yaghoubi SS , JensenMC, SatyamurthyNet al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat. Clin. Pract. Oncol. 6(1), 53–58 (2009).
  • Balyasnikova IV , FergusonSD, SenguptaS, HanY, LesniakMS. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma.PloS One5(3), e9750 (2010).
  • Ohno M , NatsumeA, Ichiro IwamiKet al. Retrovirally engineered T-cell-based immunotherapy targeting type III variant epidermal growth factor receptor, a glioma-associated antigen. Cancer Sci. 101(12), 2518–2524 (2010).
  • Mosca PJ , LyerlyHK, ClayTM, MorseMA, LyerlyHK. Dendritic cell vaccines.Front. Biosci.12, 4050–4060 (2007).
  • Steinman RM , BanchereauJ. Taking dendritic cells into medicine.Nature449(7161), 419–426 (2007).
  • Fecci PE , MitchellDA, ArcherGEet al. The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J. Neurooncol. 64(1–2), 161–176 (2003).
  • Palucka K , BanchereauJ. Cancer immunotherapy via dendritic cells.Nat. Rev. Cancer12(4), 265–277 (2012).
  • Bigner DD , PittsOM, WikstrandCJ. Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue.J. Neurosurg.55(1), 32–42 (1981).
  • Kikuchi T , AkasakiY, AbeTet al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother. 27, 452–459 (2004).
  • Liau LM , PrinsRM, KiertscherSMet al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin. Cancer Res. 11(15), 5515–5525 (2005).
  • Yamanaka R , HommaJ, YajimaNet al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res. 11(11), 4160–4167 (2005).
  • Yu JS , WheelerCJ, ZeltzerPMet al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 61(3), 842–847 (2001).
  • van Gool S , MaesW, ArdonH, VerschuereT, Van CauterS, De VleeschouwerS. Dendritic cell therapy of high-grade gliomas.Brain Pathol.19(4), 694–712 (2009).
  • De Vleeschouwer S , FieuwsS, RutkowskiSet al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 14(10), 3098–3104 (2008).
  • Yu JS , LiuG, YingH, YongWH, BlackKL, WheelerCJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma.Cancer Res.64(14), 4973–4979 (2004).
  • Phuphanich S , WheelerCJ, RudnickJDet al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 62(1), 125–135 (2013).
  • Okada H , KalinskiP, UedaRet al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Iwami K , ShimatoS, OhnoMet al. Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor alpha2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele. Cytotherapy 14(6), 733–742 (2012).
  • Sampson JH , ArcherGE, MitchellDAet al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther. 8(10), 2773–2779 (2009).
  • Heimberger AB , SampsonJH. The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients.Expert Opin. Biol. Ther.9(8), 1087–1098 (2009).
  • Sampson JH , HeimbergerAB, ArcherGEet al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28(31), 4722–4729 (2010).
  • Yamanaka R , ItohK. Peptide-based immunotherapeutic approaches to glioma: a review.Expert Opin. Biol. Ther.7(5), 645–649 (2007).
  • Okada H , KalinskiP, UedaRet al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic–polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29(3), 330–336 (2011).
  • Wong ET , GautamS, MalchowC, LunM, PanE, BremS. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis.J. Natl Compr. Canc. Netw.9(4), 403–407 (2011).
  • Castiello L , SabatinoM, JinPet al. Monocyte-derived DC maturation strategies and related pathways: a transcriptional view. Cancer Immunol. Immunother. 60(4), 457–466 (2011).
  • Schmidt SV , Nino-CastroAC, SchultzeJL. Regulatory dendritic cells: there is more than just immune activation.Front. Immunol.3, 274 (2012).
  • Fecci PE , MitchellDA, WhitesidesJFet al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66(6), 3294–3302 (2006).
  • Mitchell DA , CuiX, SchmittlingRJet al. Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118(11), 3003–3012 (2011).
  • Cho D-Y , YangW-K, LeeH-Cet al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a Phase II clinical trial. World Neurosurg.77(5–6), 736–744 (2012).
  • Copur MS , ObermillerA. Ipilimumab plus dacarbazine in melanoma.N. Engl. J. Med.365(13), 1256–1257; author reply 1257–1258 (2011).
  • Hodi FS , O’DaySJ, McdermottDFet al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010).
  • Hwu P . Treating cancer by targeting the immune system.N. Engl. J. Med.363(8), 779–781 (2010).
  • Fecci PE , OchiaiH, MitchellDAet al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin. Cancer Res. 13(7), 2158–2167 (2007).
  • Brahmer JR , TykodiSS, ChowLQet al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366(26), 2455–2465 (2012).
  • Ribas A . Tumor immunotherapy directed at PD-1.N. Engl. J. Med.366(26), 2517–2519 (2012).
  • Topalian SL , HodiFS, BrahmerJRet al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
  • Wainwright DA , BalyasnikovaIV, ChangALet al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin. Cancer Res. 18(22), 6110–6121 (2012).
  • Hussain SF , KongLY, JordanJet al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 67(20), 9630–9636 (2007).
  • Franks HA , WangQ, PatelPM. New anticancer immunotherapies.Anticancer Res.32(7), 2439–2453 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.