146
Views
1
CrossRef citations to date
0
Altmetric
Review

An overview of new biomolecular pathways in pathogen-related cancers

, &
Pages 1625-1639 | Published online: 04 Jun 2015

References

  • Warburg O , WindF, NegeleinE. The metabolism of tumors in the body. J. Gen. Physiol.8(6), 519–530 (1927).
  • Lindau Nobel Laureate Meetings org . Otto Warburg Lecture – On the Primary Causes and on the Secondary Causes of Cancer. www.mediatheque.lindau-nobel.org
  • Kim JW , DangCV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res.66(18), 8927–8930 (2006).
  • Hanahan D , WeinbergRA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Tayer W . Appendix I. In: Celsus Cornelius A. De Medicina. Latin Transcription by F. Marx, Teubner edition1915; English translation by W. G. Spencer, Loeb edition 1938. Loeb Classical Library edition, 1935 (2002). http://penelope.uchicago.edu
  • Hippocrates of Cos . Book VI, 38. In: Aphorisms (Greek and Latin bilingual edition). FoesA ( Eds.). Bibliothèque numérique Medic@: MS 595 – BIUM 2. bibliothèques interuniversitaires de médecine (BIUM), Paris, published apud Andreae Wecheli heredes, Claudium Marnium et Joannem Aubrium, Francofurti, (1595). www2.biusante.parisdescartes.fr
  • Hajdu SI . A note from history: landmarks in history of cancer, part 1. Cancer117(5), 1097–1102 (2011).
  • Celsus Cornelius A . Book V 28, 2A-C. In: De Medicina. Latin Transcription by F. Marx, Teubner edition1915; English translation by W. G. Spencer, Loeb edition 1938. Loeb Classical Library edition, 1935, (2002). http://penelope.uchicago.edu
  • Galenus Claudius of Pergamon . De Methodo Medendi, Liber XIV. In: Claudii Galeni Opera Omnia (Vol. X). KühnKG ( Ed.). Car. Cnoblochii, Leipzig, 945–1026 (1825). www2.biusante.parisdescartes.fr.
  • Galenus Claudius of Pergamon . De Tumoribus praeter naturam, Cap. XII. In: Claudii Galeni Opera Omnia (Vol. VII). KühnKG ( Ed.). Car. Cnoblochii, Leipzig, 705–732 (1824). www2.biusante.parisdescartes.fr.
  • Adriani Ravesteini . Lexicon Medicum Graeco-Latinum a Batholomeo Castello Messanense inchoatum. Art. Med. Doct. ex Hippocr. Galen. Avicenn. atque aliorum celeberrimorum Medicorum Monumnetis. Arnoldum Leers, Roterodami (1665). https://books.google.it.
  • TCGA . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455(7216), 1061–1068 (2008).
  • TCGA . Integrated genomic analyses of ovarian carcinoma. Nature474(7353), 609–615 (2011).
  • TCGA . Comprehensive molecular characterization of gastric adenocarcinoma. Nature513(7517), 202–209 (2014).
  • TCGA . Comprehensive genomic characterization of squamous cell lung cancers. Nature489(7417), 519–525 (2012).
  • TCGA . Comprehensive molecular characterization of urothelial bladder carcinoma. Nature507(7492), 315–322 (2014).
  • TCGA . Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature499(7456), 43–49 (2013).
  • TCGA . Comprehensive molecular characterization of human colon and rectal cancer. Nature487(7407), 330–337 (2012).
  • TCGA . Comprehensive molecular portraits of human breast tumours. Nature490(7418), 61–70 (2012).
  • Martinez E , YoshiharaK, KimH, MillsGM, TrevinoV, VerhaakRG. Comparison of gene expression patterns across 12 tumor types identifies a cancer supercluster characterized by TP53 mutations and cell cycle defects. Oncogene doi:10.1038/onc.2014.216 (2014) ( Epub ahead of print).
  • Verhaak RG , HoadleyKA, PurdomEet al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17(1), 98–110 (2010).
  • Hu X , SternHM, GeLet al. Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol. Cancer Res.7(4), 511–522 (2009).
  • Turner NC , Reis-FilhoJS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene25(43), 5846–5853 (2006).
  • Foulkes WD , StefanssonIM, ChappuisPOet al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst.95(19), 1482–1485 (2003).
  • Hernando E , NahleZ, JuanGet al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature430(7001), 797–802 (2004).
  • Puc J , KeniryM, LiHSet al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell7(2), 193–204 (2005).
  • Shen WH , BalajeeAS, WangJet al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell128(1), 157–170 (2007).
  • Rouzier R , PerouCM, SymmansWFet al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res.11(16), 5678–5685 (2005).
  • Bosco EE , WangY, XuHet al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest.117(1), 218–228 (2007).
  • McCabe N , TurnerNC, LordCJet al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res.66(16), 8109–8115 (2006).
  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Chiou SH , WangML, ChouYTet al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res.70(24), 10433–10444 (2010).
  • Lopez-Bertoni H , LalB, LiAet al. DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2. Oncogene doi:10.1038/onc.2014.334 (2014) ( Epub ahead of print).
  • Cao L , ZhouY, ZhaiBet al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol.11, 71 (2011).
  • Bareiss PM , PaczullaA, WangHet al. SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res.73(17), 5544–5555 (2013).
  • Ma L , LaiD, LiuT, ChengW, GuoL. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim. Biophys. Sin.(Shanghai)42(9), 593–602 (2010).
  • Goldie SJ , MulderKW, TanDW, LyonsSK, SimsAH, WattFM. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res.72(13), 3424–3436 (2012).
  • Passegue E , JamiesonCH, AillesLE, WeissmanIL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?Proc. Natl Acad. Sci. USA100(Suppl. 1), 11842–11849 (2003).
  • Mani SA , GuoW, LiaoMJet al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell133(4), 704–715 (2008).
  • Biddle A , LiangX, GammonLet al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res.71(15), 5317–5326 (2011).
  • Levine AJ . The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology384(2), 285–293 (2009).
  • Yim EK , ParkJS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res. Treat.37(6), 319–324 (2005).
  • Feng H , ShudaM, ChangY, MoorePS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science319(5866), 1096–1100 (2008).
  • Peng R , GordadzeAV, Fuentes PananaEMet al. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J. Virol.74(1), 379–389 (2000).
  • Waltzer L , PerricaudetM, SergeantA, ManetE. Epstein–Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J. Virol.70(9), 5909–5915 (1996).
  • Subramanian C , HasanS, RoweM, HottigerM, OrreR, RobertsonES. Epstein–Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J. Virol.76(10), 4699–4708 (2002).
  • Kaye KM , IzumiKM, KieffE. Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl Acad. Sci USA90(19), 9150–9154 (1993).
  • Ikeda O , SekineY, MizushimaAet al. BS69 negatively regulates the canonical NF-kappaB activation induced by Epstein–Barr virus-derived LMP1. FEBS Lett.583(10), 1567–1574 (2009).
  • Caldwell RG , WilsonJB, AndersonSJ, LongneckerR. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity9(3), 405–411 (1998).
  • Swanson-Mungerson M , BultemaR, LongneckerR. Epstein–Barr virus LMP2A imposes sensitivity to apoptosis. J. Gen. Virol.91(Pt 9), 2197–2202 (2010).
  • Friborg J Jr. , KongW, HottigerMO, NabelGJ. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature402(6764), 889–894 (1999).
  • Cai QL , KnightJS, VermaSC, ZaldP, RobertsonES. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog.2(10), e116 (2006).
  • An J , SunY, SunR, RettigMB. Kaposi’s sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene22(22), 3371–3385 (2003).
  • Guasparri I , WuH, CesarmanE. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep.7(1), 114–119 (2006).
  • Wang XW , ForresterK, YehH, FeitelsonMA, GuJR, HarrisCC. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl Acad. Sci. USA91(6), 2230–2234 (1994).
  • Jung JK , AroraP, PaganoJS, JangKL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res.67(12), 5771–5778 (2007).
  • Kuo TC , ChaoCC. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochem. Pharmacol.80(7), 1093–1102 (2010).
  • Khosravi R , MayaR, GottliebT, OrenM, ShilohY, ShkedyD. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA96(26), 14973–14977 (1999).
  • Tellinghuisen TL , RiceCM. Interaction between hepatitis C virus proteins and host cell factors. Curr. Opin. Microbiol.5(4), 419–427 (2002).
  • Lu L , WeiL, PengGet al. NS3 protein of hepatitis C virus regulates cyclooxygenase-2 expression through multiple signaling pathways. Virology371(1), 61–70 (2008).
  • Gong GZ , JiangYF, HeY, LaiLY, ZhuYH, SuXS. HCV NS5A abrogates p53 protein function by interfering with p53-DNA binding. World J. Gastroenterol.10(15), 2223–2227 (2004).
  • Schmitz U , TanSL. NS5A – from obscurity to new target for HCV therapy. Recent Pat Antiinfect. Drug Discov.3(2), 77–92 (2008).
  • Kim YM , GeigerTR, EganDI, SharmaN, NyborgJK. The HTLV-1 tax protein cooperates with phosphorylated CREB, TORC2 and p300 to activate CRE-dependent cyclin D1 transcription. Oncogene29(14), 2142–2152 (2010).
  • Gallo RC . History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene24(39), 5926–5930 (2005).
  • Buti L , SpoonerE, Van dV, RappuoliR, CovacciA, PloeghHL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl Acad. Sci. USA108(22), 9238–9243 (2011).
  • Nesic D , ButiL, LuX, StebbinsCE. Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc. Natl Acad. Sci. USA111(4), 1562–1567 (2014).
  • Saha A , KaulR, MurakamiM, RobertsonES. Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol. Ther.10(10), 961–978 (2010).
  • Scheffner M , WernessBA, HuibregtseJM, LevineAJ, HowleyPM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63(6), 1129–1136 (1990).
  • Dyson N , HowleyPM, MungerK, HarlowE. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science243(4893), 934–937 (1989).
  • Hwang SG , LeeD, KimJ, SeoT, ChoeJ. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem.277(4), 2923–2930 (2002).
  • Allen JE , MaizelsRM. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol.11(6), 375–388 (2011).
  • Tornesello M , AnnunziataC, BuonaguroL, LositoS, GreggiS, BuonaguroFM. TP53 and PIK3CA gene mutations in adenocarcinoma, squamous cell carcinoma and high-grade intraepithelial neoplasia of the cervix. J. Transl. Med.12(1), 255 (2014).
  • Klingelhutz AJ , FosterSA, McDougallJK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature380(6569), 79–82 (1996).
  • Veldman T , HorikawaI, BarrettJC, SchlegelR. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol.75(9), 4467–4472 (2001).
  • Oh ST , KyoS, LaiminsLA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol.75(12), 5559–5566 (2001).
  • Veldman T , LiuX, YuanH, SchlegelR. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl Acad. Sci. USA100(14), 8211–8216 (2003).
  • Kim WY , SharplessNE. The regulation of INK4/ARF in cancer and aging. Cell127(2), 265–275 (2006).
  • Jarrard DF , SarkarS, ShiYet al. p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res.59(12), 2957–2964 (1999).
  • Darbro BW . Mechanisms of human epithelial cell immortalization and p16NK4a induced telomere-independent sencescence [PhD thesis]. University of Iowa, Iowa City, IA, USA (2007). http://ir.uiowa.edu/etd/183.
  • Liggett WH Jr , SidranskyD. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol.16(3), 1197–1206 (1998).
  • Sharpless NE . INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res.576(1–2), 22–38 (2005).
  • Perez-Sayans M , Suarez-PenarandaJM, Padin-IruegasMEet al. The loss of p16 expression worsens the prognosis of OSCC. Appl. Immunohistochem. Mol. Morphol. (2015).
  • Weinberger PM , YuZ, HafftyBGet al. Molecular classification identifies a subset of human papillomavirus – associated oropharyngeal cancers with favorable prognosis. J. Clin. Oncol.24(5), 736–747 (2006).
  • Tornesello ML , PerriF, BuonaguroL, IonnaF, BuonaguroFM, CaponigroF. HPV-related oropharyngeal cancers: from pathogenesis to new therapeutic approaches. Cancer Lett.351(2), 198–205 (2014).
  • Kotake Y , CaoR, ViatourP, SageJ, ZhangY, XiongY. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev.21(1), 49–54 (2007).
  • Tornesello ML , BuonaguroL, Giorgi-RossiP, BuonaguroFM. Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. Biomed. Res. Int.2013, 519619 (2013).
  • Li J , MuscarellaP, JooSHet al. Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). Biochemistry44(40), 13246–13256 (2005).
  • Li J , PoiMJ, TsaiMD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry50(25), 5566–5582 (2011).
  • de Martel C , FerlayJ, FranceschiSet al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol.13(6), 607–615 (2012).
  • Tornesello ML , BuonaguroL, TatangeloF, BottiG, IzzoF, BuonaguroFM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics102(2), 74–83 (2013).
  • Mesri EA , FeitelsonMA, MungerK. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host. Microbe15(3), 266–282 (2014).
  • Bolukbas C , BolukbasFF, HorozM, AslanM, CelikH, ErelO. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect. Dis.5, 95 (2005).
  • Fujita N , SugimotoR, MaNet al. Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J. Viral Hepat.15(7), 498–507 (2008).
  • Jaeschke H . Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J. Gastroenterol. Hepatol.26(Suppl.1), 173–179 (2011).
  • Lee YI , HwangJM, ImJHet al. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J. Biol. Chem.279(15), 15460–15471 (2004).
  • Zemel R , IssacharA, Tur-KaspaR. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin. Liver Dis.15(2), 261–26x (2011).
  • Hu L , ChenL, YangGet al. HBx sensitizes cells to oxidative stress-induced apoptosis by accelerating the loss of Mcl-1 protein via caspase-3 cascade. Mol. Cancer10, 43 (2011).
  • Sieghart W , LosertD, StrommerSet al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J. Hepatol.44(1), 151–157 (2006).
  • Wang WL , LondonWT, LegaL, FeitelsonMA. HBxAg in the liver from carrier patients with chronic hepatitis and cirrhosis. Hepatology14(1), 29–37 (1991).
  • Martin-Vilchez S , Lara-PezziE, Trapero-MaruganM, Moreno-OteroR, Sanz-CamenoP. The molecular and pathophysiological implications of hepatitis B X antigen in chronic hepatitis B virus infection. Rev. Med. Virol.21(5), 315–329 (2011).
  • Jin YM , YunC, ParkC, WangHJ, ChoH. Expression of hepatitis B virus X protein is closely correlated with the high periportal inflammatory activity of liver diseases. J. Viral Hepat.8(5), 322–330 (2001).
  • Gong G , WarisG, TanveerR, SiddiquiA. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc. Natl Acad. Sci. USA98(17), 9599–9604 (2001).
  • Okuda M , LiK, BeardMRet al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology122(2), 366–375 (2002).
  • Boudreau HE , EmersonSU, KorzeniowskaA, JendrysikMA, LetoTL. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J. Virol.83(24), 12934–12946 (2009).
  • de Mochel NS , SeronelloS, WangSHet al. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology52(1), 47–59 (2010).
  • Santos CX , TanakaLY, WosniakJ, LaurindoFR. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid. Redox. Signal.11(10), 2409–2427 (2009).
  • Kumthip K , ChusriP, JilgNet al. Hepatitis C virus NS5A disrupts STAT1 phosphorylation and suppresses type I interferon signaling. J. Virol.86(16), 8581–8591 (2012).
  • Rehermann B . Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Invest.119(7), 1745–1754 (2009).
  • Brechot C . Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology127(5 Suppl. 1), S56-S61 (2004).
  • Jeong SW , JangJY, ChungRT. Hepatitis C virus and hepatocarcinogenesis. Clin. Mol. Hepatol.18(4), 347–356 (2012).
  • Ray RB , MeyerK, RayR. Hepatitis C virus core protein promotes immortalization of primary human hepatocytes. Virology271(1), 197–204 (2000).
  • Peek RM Jr , CrabtreeJE. Helicobacter infection and gastric neoplasia. J. Pathol.208(2), 233–248 (2006).
  • Ernst PB , PeuraDA, CroweSE. The translation of Helicobacter pylori basic research to patient care. Gastroenterology130(1), 188–206 (2006).
  • Segal ED , ChaJ, LoJ, FalkowS, TompkinsLS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA96(25), 14559–14564 (1999).
  • Viala J , ChaputC, BonecaIGet al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol.5(11), 1166–1174 (2004).
  • Ding SZ , ZhengPY. Helicobacter pylori infection induced gastric cancer; advance in gastric stem cell research and the remaining challenges. Gut Pathog.4(1), 18 (2012).
  • Ding SZ , FischerW, Kaparakis-LiaskosMet al. Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS ONE5(4), e9875 (2010).
  • Backert S , NaumannM. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol.18(11), 479–486 (2010).
  • Lee IO , KimJH, ChoiYJet al. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J. Biol. Chem.285(21), 16042–16050 (2010).
  • Jang BG , KimWH. Molecular pathology of gastric carcinoma. Pathobiology78(6), 302–310 (2011).
  • O’Gorman A , ColleranA, RyanA, MannJ, EganLJ. Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.299(1), G96–G105 (2010).
  • Ohnishi N , YuasaH, TanakaSet al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA105(3), 1003–1008 (2008).
  • Hayashi D , TamuraA, TanakaHet al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology142(2), 292–304 (2012).
  • Marusawa H , ChibaT. Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Curr. Opin. Immunol.22(4), 442–447 (2010).
  • Huang FY , ChanAO, RashidA, WongDK, ChoCH, YuenMF. Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1beta activation of nitric oxide production in gastric cancer cells. Cancer118(20), 4969–4980 (2012).
  • Leung SY , YuenST, ChungLP, ChuKM, ChanAS, HoJC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res.59(1), 159–164 (1999).
  • Deng N , GohLK, WangHet al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut61(5), 673–684 (2012).
  • Olivier M , HollsteinM, HainautP. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol.2(1), a001008 (2010).
  • Murakami K , FujiokaT, OkimotoTet al. Analysis of p53 gene mutations in Helicobacter pylori-associated gastritis mucosa in endoscopic biopsy specimens. Scand. J. Gastroenterol.34(5), 474–477 (1999).
  • Piazzi G , FiniL, SelgradMet al. Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer. Oncotarget.2(12), 1291–1301 (2011).
  • Tomita H , TakaishiS, MenheniottTRet al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology140(3), 879–891 (2011).
  • Amieva MR , VogelmannR, CovacciA, TompkinsLS, NelsonWJ, FalkowS. Disruption of the epithelial apical–junctional complex by Helicobacter pylori CagA. Science300(5624), 1430–1434 (2003).
  • Saito Y , Murata-KamiyaN, HirayamaT, OhbaY, HatakeyamaM. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J. Exp. Med.207(10), 2157–2174 (2010).
  • Bagnoli F , ButiL, TompkinsL, CovacciA, AmievaMR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc. Natl Acad. Sci. USA102(45), 16339–16344 (2005).
  • Bessede E , StaedelC, cuna AmadorLAet al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial–mesenchymal transition-like changes. Oncogene33(32), 4123–4131 (2014).
  • Serrano B , AlemanyL, TousSet al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect. Agent Cancer7(1), 38 (2012).
  • Buonaguro F , TorneselloM, BuonaguroL. The XIX century smallpox prevention in Naples and the risk of transmission of human blood-related pathogens. J. Transl. Med.13(1), 33 (2015).
  • Kowdley KV , GordonSC, ReddyKRet al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med.370(20), 1879–1888 (2014).
  • Malfertheiner P , MegraudF, O’MorainCAet al. Management of Helicobacter pylori infection – the Maastricht IV/Florence Consensus Report. Gut61(5), 646–664 (2012).
  • Campistol JM , SchenaFP. Kaposi’s sarcoma in renal transplant recipients – the impact of proliferation signal inhibitors. Nephrol. Dial. Transplant.22Suppl 1, i17–i22 (2007).
  • Calistri E , TiribelliM, BattistaMet al. Epstein–Barr virus reactivation in a patient treated with anti-thymocyte globulin for severe aplastic anemia. Am. J. Hematol.81(5), 355–357 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.