34
Views
0
CrossRef citations to date
0
Altmetric
Perspective

A Pallid Rainbow: Toward Improved Understanding of Avian Influenza Biology

, , , , , & show all
Pages 429-437 | Received 08 Mar 2016, Accepted 15 Apr 2016, Published online: 24 May 2016

References

  • Sonnberg S , WebbyRJ, WebsterRG . Natural history of highly pathogenic avian influenza H5N1 . Virus Res.178 ( 1 ), 63 – 77 ( 2013 ).
  • Russell CA , FonvilleJM, BrownAEet al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host . Science336 ( 6088 ), 1541 – 1547 ( 2012 ).
  • Davis CT , ChenLM, PappasCet al. Use of highly pathogenic avian influenza A(H5N1) gain-of-function studies for molecular-based surveillance and pandemic preparedness . MBio5 ( 6 ), pii: e02431–14 ( 2014 ).
  • Berns KI , CasadevallA, CohenMLet al. Public health and biosecurity. Adaptations of avian flu virus are a cause for concern . Science335 ( 6069 ), 660 – 661 ( 2012 ).
  • Casadevall A , ShenkT . The H5N1 moratorium controversy and debate . MBio3 ( 5 ), pii: e00379–12 ( 2012 ).
  • Alexander DJ , BrownIH . History of highly pathogenic avian influenza . Rev. Sci. Tech.28 ( 1 ), 19 – 38 ( 2009 ).
  • Yuen KY , ChanPK, PeirisMet al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus . Lancet351 ( 9101 ), 467 – 471 ( 1998 ).
  • Anderson T , CapuaI, DauphinGet al. FAO–OIE–WHO joint technical consultation on avian influenza at the human–animal interface . Influenza Other Respir. Viruses4 ( Suppl. 1 ), 1 – 29 ( 2010 ).
  • Lee DH , TorchettiMK, WinkerKet al. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds . J. Virol.89 ( 12 ), 6521 – 6524 ( 2015 ).
  • WHO . Human cases of influenza at the human–animal interface, January 2014–April 2015 . Wkly Epidemiol. Rec.90 ( 28 ), 349 – 364 ( 2015 ).
  • Webster RG , BeanWJ, GormanOT, ChambersTM, KawaokaY . Evolution and ecology of influenza A viruses . Microbiol. Rev.56 ( 1 ), 152 – 179 ( 1992 ).
  • Li J , Zu DohnaH, CardonaCJ, MillerJ, CarpenterTE . Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses . PLoS ONE6, e14722 ( 2011 ).
  • Gabriel G , KlingelK, OtteAet al. Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus . Nature Comm.2, 156 ( 2011 ).
  • Long JS , GiotisES, MoncorgeOet al. Species difference in ANP32A underlies influenza A virus polymerase host restriction . Nature529 ( 7584 ), 101 – 104 ( 2016 ).
  • Imai M , KawaokaY . The role of receptor binding specificity in interspecies transmission of influenza viruses . Curr. Opin. Virol.2 ( 2 ), 160 – 167 ( 2012 ).
  • Alexander DJ . An overview of the epidemiology of avian influenza . Vaccine25 ( 30 ), 5637 – 5644 ( 2007 ).
  • Su S , BiY, WongG, GrayGC, GaoGF, LiS . Epidemiology, evolution, and recent outbreaks of avian influenza virus in China . J. Virol.89 ( 17 ), 8671 – 8676 ( 2015 ).
  • Lam TT , WangJ, ShenYet al. The genesis and source of the H7N9 influenza viruses causing human infections in China . Nature502 ( 7470 ), 241 – 244 ( 2013 ).
  • Pu J , WangS, YinYet al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus . Proc. Natl Acad. Sci. USA112 ( 2 ), 548 – 553 ( 2015 ).
  • Becker WB . The isolation and classification of tern virus: influenza virus A/tern/South Africa/1961 . J. Hyg.64, 309 – 320 ( 1966 ).
  • Gaidet N , CattoliG, HammoumiSet al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl . PLoS Pathog.4 ( 8 ), e1000127 ( 2008 ).
  • Rott R . The pathogenic determinant of influenza virus . Vet. Microbiol.33 ( 1–4 ), 303 – 310 ( 1992 ).
  • Böttcher-Friebertshäuser E , GartenW, MatrosovichM, KlenkHD . The hemagglutinin: a determinant of pathogenicity . Curr. Top. Microbiol. Immunol.385, 3 – 34 ( 2014 ).
  • França MS , BrownJD . Influenza pathobiology and pathogenesis in avian species . Curr. Top. Microbiol. Immunol.385, 221 – 242 ( 2014 ).
  • Veits J , WeberS, StechOet al. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype . Proc. Natl Acad. Sci. USA109, 2579 – 2584 ( 2012 ).
  • Munster VJ , SchrauwenEJ, de WitEet al. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype . J. Virol.84, 7953 – 7960 ( 2010 ).
  • Stech O , VeitsJ, WeberSet al. Acquisition of a polybasic hemagglutinin cleavage site by a low-pathogenic avian influenza virus is not sufficient for immediate transformation into a highly pathogenic strain . J. Virol.83, 5864 – 5868 ( 2009 ).
  • Londt BZ , BanksJ, AlexanderDJ . Highly pathogenic avian influenza viruses with low virulence for chickens in in vivo tests . Av. Pathol.36, 347 – 350 ( 2007 ).
  • Deshpande KL , FriedVA, AndoM, WebsterRG . Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence . Proc. Natl Acad. Sci. USA84, 36 – 40 ( 1987 ).
  • Monne I , FusaroA, NelsonMIet al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor . J. Virol.88, 4375 – 4388 ( 2014 ).
  • Abdelwhab el SM , VeitsJ, TauscherKet al. A unique multibasic proteolytic cleavage site and three mutations in the HA2 domain confer high virulence of H7N1 avian influenza virus in chickens . J. Virol.90, 400 – 411 ( 2015 ).
  • Munier S , LarcherT, Cormier-AlineFet al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens . J. Virol.84, 940 – 952 ( 2010 ).
  • Sorrell EM , SongH, PenaL, PerezDR . A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens . J. Virol.84, 11831 – 11840 ( 2010 ).
  • Stech O , VeitsJ, Abdelwhab elSMet al. The neuraminidase stalk deletion serves as major virulence determinant of H5N1 highly pathogenic avian influenza viruses in chicken . Sci. Rep.5, 13493 ( 2015 ).
  • Li Y , ChenS, ZhangXet al. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks . PLoS ONE9, e95539 ( 2014 ).
  • Hoffmann TW , MunierS, LarcherTet al. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks . J. Virol.86, 584 – 588 ( 2012 ).
  • Tada T , SuzukiK, SakuraiYet al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens . J. Virol.85, 1834 – 1846 ( 2011 ).
  • Fujimoto Y , ItoH, TomitaMet al. Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens . Arch. Virol.160, 2063 – 2070 ( 2015 ).
  • Long JX , PengDX, LiuYL, WuYT, LiuXF . Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene . Virus Genes36, 471 – 478 ( 2008 ).
  • Li Z , JiangY, JiaoPet al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses . J. Virol.80, 11115 – 11123 ( 2006 ).
  • Kong W , LiuL, WangYet al. C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission . J. Gen. Virol.96, 259 – 268 ( 2015 ).
  • Zielecki F , SemmlerI, KalthoffDet al. Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein . J. Virol.84, 10708 – 10718 ( 2010 ).
  • Keiner B , MaenzB, WagnerRet al. Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1) . J. Virol.84, 11858 – 11865 ( 2010 ).
  • Abdelwhab EM , VeitsJ, BreithauptAet al. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens . Virulencedoi: https://doi.org/10.1080/21505594.2016.1159367 ( 2016 ) ( Epub ahead of print ).
  • Ewald SJ , KapczynskiDR, LivantEJet al. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus . Immunogenetics63, 363 – 375 ( 2011 ).
  • Verhelst J , ParthoensE, SchepensB, FiersW, SaelensX . Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly . J. Virol.86, 13445 – 13455 ( 2012 ).
  • Barber MR , AldridgeJRJr, WebsterRG, MagorKE . Association of RIG-I with innate immunity of ducks to influenza . Proc. Natl Acad. Sci. USA107, 5913 – 5918 ( 2010 ).
  • Weber M , SediriH, FelgenhauerUet al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I . Cell Host Microbe17 ( 3 ), 309 – 319 ( 2015 ).
  • Schrauwen EJ , FouchierRA . Host adaptation and transmission of influenza A viruses in mammals . Emerg. Microb. Infect.3 ( 2 ), e9 ( 2014 ).
  • Myers KP , OlsenCW, GrayGC . Cases of swine influenza in humans: a review of the literature . Clin. Infect. Dis.44 ( 8 ), 1084 – 1088 ( 2007 ).
  • Thacker E , JankeB . Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas . J. Infect. Dis.197 ( Suppl. 1 ), S19 – S24 ( 2008 ).
  • Vincent AL , MaW, LagerKM, JankeBH, RichtJA . Swine influenza viruses a North American perspective . Adv. Virus Res.72, 127 – 154 ( 2008 ).
  • Bowman AS , SreevatsanS, KillianMLet al. Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012 . Emerg. Microb. Infect.1 ( 10 ), e33 ( 2012 ).
  • Jhung MA , EppersonS, BiggerstaffMet al. Outbreak of variant influenza A(H3N2) virus in the United States . Clin. Infect. Dis.57 ( 12 ), 1703 – 1712 ( 2013 ).
  • Lindstrom S , GartenR, BalishAet al. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011 . Emerg. Infect. Dis.18 ( 5 ), 834 – 837 ( 2012 ).
  • Neumann G , NodaT, KawaokaY . Emergence and pandemic potential of swine-origin H1N1 influenza virus . Nature459 ( 7249 ), 931 – 939 ( 2009 ).
  • Pappas C , AguilarPV, BaslerCFet al. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus . Proc. Natl Acad. Sci. USA105 ( 8 ), 3064 – 3069 ( 2008 ).
  • Tumpey TM , BaslerCF, AguilarPVet al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus . Science310 ( 5745 ), 77 – 80 ( 2005 ).
  • Gabriel G , DauberB, WolffT, PlanzO, KlenkHD, StechJ . The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host . Proc. Natl Acad. Sci. USA102 ( 51 ), 18590 – 18595 ( 2005 ).
  • Schrauwen EJ , RichardM, BurkeDF, RimmelzwaanGF, HerfstS, FouchierRA . Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 virus . J. Virol.90 ( 7 ), 3794 – 3799 ( 2016 ).
  • Dortmans JC , DekkersJ, WickramasingheINet al. Adaptation of novel H7N9 influenza A virus to human receptors . Sci. Rep.3, 3058 ( 2013 ).
  • Bi Y , XieQ, ZhangSet al. Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice . J. Virol.89 ( 1 ), 2 – 13 ( 2015 ).
  • Herfst S , SchrauwenEJA, LinsterMet al. Airborne transmission of influenza A/H5N1 virus between ferrets . Science336 ( 6088 ), 1534 – 1541 ( 2012 ).
  • Imai M , WatanabeT, HattaMet al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets . Nature486 ( 7403 ), 420 – 428 ( 2012 ).
  • Mänz B , DornfeldD, GötzVet al. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein . PLoS Pathog.9 ( 3 ), e1003279 ( 2013 ).
  • Götz V , MagarM, DornfeldDet al. Influenza A viruses escape from MxA restriction 1 at the expense of efficient 2 nuclear vRNP import . Sci. Rep.6, 23138 ( 2016 ).
  • Subbarao EK , LondonW, MurphyBR . A single amino acid in the PB2 gene of influenza A virus is a determinant of host range . J. Virol.67 ( 4 ), 1761 – 1764 ( 1993 ).
  • Yamada S , HattaM, StakerBLet al. Biological and structural characterization of a host-adapting amino acid in influenza virus . PLoS Pathog.6 ( 8 ), e1001034 ( 2010 ).
  • Leibler JH , OtteJ, Roland-HolstDet al. Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza . Ecohealth6, 58 – 70 ( 2009 ).
  • Zhou X , LiY, WangY, EdwardsJet al. The role of live poultry movement and live bird market biosecurity in the epidemiology of influenza A (H7N9): a cross-sectional observational study in four eastern China provinces . J. Infect.71 ( 4 ), 470 – 479 ( 2015 ).
  • Yu H , WuJT, CowlingBJet al. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study . Lancet383 ( 9916 ), 541 – 548 ( 2014 ).
  • Peiris JS , CowlingBJ, WuJTet al. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia . Lancet Infect. Dis.16 ( 2 ), 252 – 258 ( 2016 ).
  • Swayne DE , SpackmanE . Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza . Dev. Biol. (Basel)135, 79 – 94 ( 2013 ).
  • Sitaras I , KalthoffD, BeerM, PeetersB, de JongMC . Immune escape mutants of highly pathogenic avian influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein . PLoS ONE9 ( 2 ), e84628 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.