71
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanisms of AIDS-related Cytomegalovirus Retinitis

, , , , , & show all
Pages 545-560 | Received 29 Mar 2019, Accepted 30 Jul 2019, Published online: 04 Sep 2019

References

  • Mocarski ES Jr, Shenk T , GriffithsPD, PassRF. Cyotmegaloviruses. In: Fields Virology. KnipeDM, HowleyPM ( Eds). Lippencott Williams & Wilkins, PA, USA, 1960–2014 (2013).
  • Cannon MJ , SchmidDS, HydeTB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol., 20(4), 202–213 (2010).
  • Drew WL , MintzL, MinerRC, SandsM, KettererB. Prevalence of cytomegalovirus infection in homosexual men. J. Infect. Dis., 143(2), 188–192 (1981).
  • Klemola E . Cytomegalovirus infection in previously healthy adults. Ann. Intern. Med., 79(2), 267–268 (1973).
  • Taylor-Wiedeman J , SissonsJG, BorysiewiczLK, SinclairJH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol., 72(Pt 9), 2059–2064 (1991).
  • Kondo K , KaneshimaH, MocarskiES. Human cytomegalovirus latent infection of granulocyte–macrophage progenitors. Proc. Natl Acad. Sci. USA, 91(25), 11879–11883 (1994).
  • Dollard SC , GrosseSD, RossDS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol., 17(5), 355–363 (2007).
  • Reusser P , RiddellS, MeyersJ, GreenbergP. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood, 78(5), 1373–1380 (1991).
  • Smith J , SeoS, BoeckhMet al. Reduced mortality of cytomegalovirus pneumonia after hematopoietic cell transplantation due to antiviral therapy and changes in transplantation practices. Clin. Infect. Dis., 61(1), 31–39 (2015).
  • Cheung TW , TeichSA. Cytomegalovirus infection in patients with HIV infection. Mt. Sinai J. Med., 66(2), 113–124 (1999).
  • Stewart MW . Optimal management of cytomegalovirus retinitis in patients with AIDS. Clin. Ophthalmol., 4, 285–299 (2010).
  • Jabs DA , AhujaA, Van NattaML, LyonAT, YehS, DanisR. Long-term outcomes of cytomegalovirus retinitis in the era of modern antiretroviral therapy: results from a United States cohort. Ophthalmology, 122(7), 1452–1463 (2015).
  • Sugar EA , JabsDA, AhujaAet al. Incidence of cytomegalovirus retinitis in the era of highly active antiretroviral therapy. Am. J. Ophthalmol., 153(6), 1016–1024 (2012).
  • Lurain NS , ChouS. Antiviral drug resistance of human cytomegalovirus. Clin. Microbiol. Rev., 23(4), 689–712 (2010).
  • Port AD , AlabiRO, KoenigL, GuptaMP. Cytomegalovirus retinitis in the post-cART era. Curr. Ophthalmol. Rep., 6(2), 133–144 (2018).
  • Jabs DA . Cytomegalovirus retinitis and the acquired immunodeficiency syndrome–bench to bedside: LXVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol., 151(2), 198–216 (2011).
  • Kuppermann BD , PettyJG, RichmanDDet al. Correlation between CD4+ counts and prevalence of cytomegalovirus retinitis and human immunodeficiency virus-related noninfectious retinal vasculopathy in patients with acquired immunodeficiency syndrome. Am. J. Ophthalmol., 115(5), 575–582 (1993).
  • Heiden D , FordN, WilsonDet al. Cytomegalovirus retinitis: the neglected disease of the AIDS pandemic. PLoS Med., 4(12), e334 (2007).
  • Alston CI , CarterJJ, DixRD. Chapter 2: Cytomegalovirus and the eye: AIDS-related retinitis and beyond. In: Herpesviridae.Avid Science, 2–43 (2017).
  • Holland GN , TufailA, JordanMC. Ocular infections and immunity. In: Cytomegalovirus Disease. PeposeJS, HollandGN, WilhelmusKR ( Eds). Mosby-Year Book, MO, USA, 1088–1130 (1996).
  • Hofman FM , HintonDR. Tumor necrosis factor-alpha in the retina in acquired immune deficiency syndrome. Invest. Ophthalmol. Vis. Sci., 33(6), 1829–1835 (1992).
  • Pepose JS , HollandGN, NestorMS, CochranAJ, FoosRY. Acquired immune deficiency syndrome. Pathogenic mechanisms of ocular disease. Ophthalmology, 92(4), 472–484 (1985).
  • Ahmed A . Antiviral treatment of cytomegalovirus infection. Infect. Disord. Drug Targets, 11(5), 475–503 (2011).
  • Marty FM , LjungmanP, ChemalyRFet al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. New Engl. J. Med., 377(25), 2433–2444 (2017).
  • Jacobsen T , SifontisN. Drug interactions and toxicities associated with the antiviral management of cytomegalovirus infection. Am. J. Health Syst. Pharm., 67(17), 1417–1425 (2010).
  • Papanicolaou GA , SilveiraFP, LangstonAAet al. Maribavir for refractory or resistant cytomegalovirus infections in hematopoietic-cell or solid-organ transplant recipients: a randomized, dose-ranging, double-blind, Phase IIstudy. Clin. Infect. Dis., 68(8), 1255–1264 (2019).
  • Atherton SS , NewellCK, KanterMY, CousinsSW. Retinitis in euthymic mice following inoculation of murine cytomegalovirus (MCMV) via the supraciliary route. Curr. Eye Res., 10(7), 667–677 (1991).
  • Atherton SS , NewellCK, KanterMY, CousinsSW. T cell depletion increases susceptibility to murine cytomegalovirus retinitis. Invest. Ophthalmol. Vis. Sci., 33(12), 3353–3360 (1992).
  • Duan Y , JiZ, AthertonSS. Dissemination and replication of MCMV after supraciliary inoculation in immunosuppressed BALB/c mice. Invest. Ophthalmol. Vis. Sci., 35(3), 1124–1131 (1994).
  • Dix RD , CrayC, CousinsSW. Mice immunosuppressed by murine retrovirus infection (MAIDS) are susceptible to cytomegalovirus retinitis. Curr. Eye Res., 13(8), 587–595 (1994).
  • Hartley JW , FredricksonTN, YetterRA, MakinoM, MorseHC3rd. Retrovirus-induced murine acquired immunodeficiency syndrome: natural history of infection and differing susceptibility of inbred mouse strains. J. Virol., 63(3), 1223–1231 (1989).
  • Jolicoeur P . Murine acquired immunodeficiency syndrome (MAIDS): an animal model to study the AIDS pathogenesis. FASEB J., 5(10), 2398–2405 (1991).
  • Mosier DE , YetterRA, MorseHC3rd. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice. J. Exp. Med., 161(4), 766–784 (1985).
  • Gazzinelli RT , MakinoM, ChattopadhyaySKet al. CD4+ subset regulation in viral infection. Preferential activation of Th2 cells during progression of retrovirus-induced immunodeficiency in mice. J. Immunol., 148(1), 182–188 (1992).
  • Dix RD , CousinsSW. Susceptibility to murine cytomegalovirus retinitis during progression of MAIDS: correlation with intraocular levels of tumor necrosis factor-alpha and interferon-gamma. Curr. Eye Res., 29(2–3), 173–180 (2004).
  • Dix RD , PodackER, CousinsSW. Loss of the perforin cytotoxic pathway predisposes mice to experimental cytomegalovirus retinitis. J. Virol., 77(6), 3402–3408 (2003).
  • Dix RD , EkworomaduCO, HernandezE, CousinsSW. Perforin knockout mice, but not mice with MAIDS, show protection against experimental cytomegalovirus retinitis after adoptive transfer of immune cells with a functional perforin cytotoxic pathway. Arch. Virol., 149(11), 2235–2244 (2004).
  • Dix RD , CrayC, CousinsSW. Antibody alone does not prevent experimental cytomegalovirus retinitis in mice with retrovirus-induced immunodeficiency (MAIDS). Ophthalmic Res., 29(6), 381–392 (1997).
  • Dix RD , GiedlinM, CousinsSW. Systemic cytokine immunotherapy for experimental cytomegalovirus retinitis in mice with retrovirus-induced immunodeficiency. Invest. Ophthalmol. Vis. Sci., 38(7), 1411–1417 (1997).
  • Dix RD , PodackER, CousinsSW. Murine cytomegalovirus retinitis during retrovirus-induced immunodeficiency (MAIDS) in mice: interleukin-2 immunotherapy correlates with increased intraocular levels of perforin mRNA. Antiviral Res., 59(2), 111–119 (2003).
  • Dix RD , CousinsSW. Interleukin-2 immunotherapy of murine cytomegalovirus retinitis during MAIDS correlates with increased intraocular CD8+ T-cell infinterleukintration. Ophthalmic Res., 35(3), 154–159 (2003).
  • Dix RD , CousinsSW. Murine cytomegalovirus retinitis during MAIDS: susceptibility correlates with elevated intraocular levels of interleukin-4 mRNA. Curr. Eye Res., 26(3–4), 211–217 (2003).
  • Blalock EL , ChienH, DixRD. Systemic reduction of interleukin-4 or interleukin-10 fails to reduce the frequency or severity of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. Ophthalmol. Eye Dis., 4, 79–90 (2012).
  • Blalock EL , ChienH, DixRD. Murine cytomegalovirus downregulates interleukin-17 in mice with retrovirus-induced immunosuppression that are susceptible to experimental cytomegalovirus retinitis. Cytokine, 61(3), 862–875 (2013).
  • Chien H , DixRD. Evidence for multiple cell death pathways during development of experimental cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression: apoptosis, necroptosis, and pyroptosis. J. Virol., 86(20), 10961–10978 (2012).
  • Chien H , AlstonCI, DixRD. Suppressor of cytokine signaling 1 (SOCS1) and SOCS3 are stimulated within the eye during experimental murine cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. J. Virol., 92(18), e00526-18 (2018).
  • Alston CI , DixRD. Reduced frequency of murine cytomegalovirus retinitis in C57BL/6 mice correlates with low levels of suppressor of cytokine signaling (SOCS)1 and SOCS3 expression within the eye during corticosteroid-induced immunosuppression. Cytokine, 97, 38–41 (2017).
  • Alston CI , DixRD. Murine cytomegalovirus infection of mouse macrophages stimulates early expression of suppressor of cytokine signaling (SOCS)1 and SOCS3. PLoS ONE, 12(2), e0171812 (2017).
  • Jabs DA , GilpinAM, MinYIet al. HIV and cytomegalovirus viral load and clinical outcomes in AIDS and cytomegalovirus retinitis patients: monoclonal antibody cytomegalovirus retinitis trial. AIDS, 16(6), 877–887 (2002).
  • Smyth MJ , TrapaniJA. The relative role of lymphocyte granule exocytosis versus death receptor-mediated cytotoxicity in viral pathophysiology. J. Virol., 72(1), 1–9 (1998).
  • Clerici M , ShearerGM. A TH1–>TH2 switch is a critical step in the etiology of HIV infection. Immunol. Today, 14(3), 107–111 (1993).
  • Romagnani S . T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 85(1), 9–18 (2000).
  • Smith KA . Interleukin-2: inception, impact and implications. Science, 240(4856), 1169–1176 (1988).
  • Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 3(2), 133–146 (2003).
  • Bradley JR . TNF-mediated inflammatory disease. J. Pathol., 214(2), 149–160 (2008).
  • Schoenborn JR , WilsonCB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol., 96, 41–101 (2007).
  • Erard F , WildMT, Garcia-SanzJA, LeGros G. Switch of CD8 T cells to noncytolytic CD8-CD4- cells that make TH2 cytokines and help B cells. Science, 260(5115), 1802–1805 (1993).
  • Elrefaei M , VenturaFL, BakerCA, ClarkR, BangsbergDR, CaoH. HIV-specific interleukin-10-positive CD8+ T cells suppress cytolysis and interleukin-2 production by CD8+ T cells. J. Immunol., 178(5), 3265–3271 (2007).
  • Caspi RR . A look at autoimmunity and inflammation in the eye. J. Clin. Invest., 120(9), 3073–3083 (2010).
  • Darnell JE Jr , KerrIM, StarkGR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 264(5164), 1415–1421 (1994).
  • Alexander WS , HiltonDJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol., 22, 503–529 (2004).
  • Yoshimura A , NakaT, KuboM. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol., 7(6), 454–465 (2007).
  • Alexander WS , StarrR, FennerJEet al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell, 98(5), 597–608 (1999).
  • Croker BA , KrebsDL, ZhangJGet al. SOCS3 negatively regulates interleukin-6 signaling in vivo. Nat. Immunol., 4(6), 540–545 (2003).
  • Liu X , MamezaMG, LeeYSet al. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes, 57(6), 1651–1658 (2008).
  • Akhtar LN , BenvenisteEN. Viral exploitation of host SOCS protein functions. J. Virol., 85(5), 1912–1921 (2011).
  • Alston CI , DixRD. SOCS and herpesviruses, with emphasis on cytomegalovirus retinitis. Front. Immunol., 10(732), e00732 (2019).
  • Dix RD . Systemic murine cytomegalovirus infection of mice with retrovirus-induced immunodeficiency results in ocular infection but not retinitis. Ophthalmic Res., 30(5), 295–301 (1998).
  • Egwuagu CE , YuCR, ZhangM, MahdiRM, KimSJ, GeryI. Suppressors of cytokine signaling proteins are differentially expressed in Th1 and Th2 cells: implications for Th cell lineage commitment and maintenance. J. Immunol., 168(7), 3181–3187 (2002).
  • Fletcher J , StarrR. The role of suppressors of cytokine signalling in thymopoiesis and T cell activation. Int. J. Biochem. Cell Biol., 37(9), 1774–1786 (2005).
  • Taleb S , RomainM, RamkhelawonBet al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med., 206(10), 2067–2077 (2009).
  • Strobl B , BubicI, BrunsUet al. Novel functions of tyrosine kinase 2 in the antiviral defense against murine cytomegalovirus. J. Immunol., 175(6), 4000–4008 (2005).
  • Trinterleukinling M , LeVT, Rashidi-AlavijehJet al. ‘Activated’ STAT proteins: a paradoxical consequence of inhibited JAK-STAT signaling in cytomegalovirus-infected cells. J. Immunol., 192(1), 447–458 (2014).
  • Kerr JF , WyllieAH, CurrieAR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26(4), 239–257 (1972).
  • Duprez L , WirawanE, BergheTV, VandenabeeleP. Major cell death pathways at a glance. Microbes Infect., 11(13), 1050–1062 (2009).
  • Green DR , LlambiF. Cell death signaling. Cold Spring Harb. Perspect. Biol., 7(12), a006080 (2015).
  • Brune W , AndoniouCE. Die another day: inhibition of cell death pathways by cytomegalovirus. Viruses, 9(9), E249 (2017).
  • Hengartner MO . The biochemistry of apoptosis. Nature, 407(6805), 770–776 (2000).
  • Elmore S . Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35(4), 495–516 (2007).
  • Rahman MM , McFaddenG. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog., 2(2), e4 (2006).
  • Mondino BJ , SidikaroY, MayerFJ, SumnerHL. Inflammatory mediators in the vitreous humor of AIDS patients with retinitis. Invest. Ophthalmol. Vis. Sci., 31(5), 798–804 (1990).
  • Bigger JE , TanigawaM, ZhangM, AthertonSS. Murine cytomegalovirus infection causes apoptosis of uninfected retinal cells. Invest. Ophthalmol. Vis. Sci., 41(8), 2248–2254 (2000).
  • Zhang M , AthertonSS. Apoptosis in the retina during MCMV retinitis in immunosuppressed BALB/c mice. J. Clin. Virol., 25(0, Suppl.2), 137–147 (2002).
  • Zhou J , ZhangM, AthertonSS. Tumor necrosis factor-α–induced apoptosis in murine cytomegalovirus retinitis. Invest. Ophthalmol. Vis. Sci., 48(4), 1691–1700 (2007).
  • Zhang M , CovarJ, MarshallB, DongZ, AthertonSS. Lack of TNF-α promotes caspase-3–independent apoptosis during murine cytomegalovirus retinitis. Invest. Ophthalmol. Vis. Sci., 52(3), 1800–1808 (2011).
  • Upton JW , ShubinaM, BalachandranS. RIPK3-driven cell death during virus infections. Immunol. Rev., 277(1), 90–101 (2017).
  • Mocarski ES , UptonJW, KaiserWJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat. Rev. Immunol., 12(2), 79–88 (2011).
  • Bergsbaken T , FinkSL, CooksonBT. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol., 7(2), 99–109 (2009).
  • Sharma D , KannegantiTD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol., 213(6), 617–629 (2016).
  • Aglietti RA , EstevezA, GuptaAet al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA, 113(28), 7858–7863 (2016).
  • Vanham G , Van GulckE. Can immunotherapy be useful as a ‘functional cure’ for infection with human immunodeficiency virus-1?Retrovirology, 9(1), 72 (2012).
  • Dash PK , KaminskiR, BellaRet al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun., 10(1), 2753 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.