3,591
Views
0
CrossRef citations to date
0
Altmetric
Review

Can Anti-Parasitic Drugs Help Control COVID-19?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 315-339 | Received 06 Jul 2021, Accepted 28 Feb 2022, Published online: 21 Mar 2022

References

  • WHO . COVID-19: One year later – WHO Director-General’s new year message. http://www.who.int/News/Item/30-12-2020-COVID-19-Anniversary-and-Looking-Forward-to-2021
  • The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 5(4), 536–544 (2020).
  • Cheng J , WangX, NieTet al. A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids. Anal. Bioanal. Chem., 412(11), 2433–2441 (2020).
  • Boopathi S , PomaAB, KolandaivelP. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn., 39(9), 3409–3418 (2021).
  • Hui DSC , ZumlaA. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect. Dis. Clin. North Am., 33(4), 869–889 (2019).
  • Guo ZD , WangZY, ZhangSFet al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis., 26(7), 1583–1591 (2020).
  • Khateeb J , LiY, ZhangH. Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit. Care, 25(1), 244 (2021).
  • Li Z , NieK, LiKet al. Genome characterization of the first outbreak of COVID-19 Delta Variant B.1.617.2 - Guangzhou City, Guangdong Province, China, May 2021. China CDC Wkly, 3(27), 587–589 (2021).
  • Alexandar SRM , KumarRs, JakkanK. . A comprehensive review on COVID-19 Delta variant. Int. J. Pharmacol. Clin. Res., 5, 83–85 (2021).
  • Planas D , VeyerD, BaidaliukAet al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 596(7871), 276–280 (2021).
  • Geng J , ChenL, YuanYet al. CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants Delta, Alpha, Beta, and Gamma. Signal. Transduct. Target Ther., 6(1), 347 (2021).
  • An EUA for sotrovimab for treatment of COVID-19. Med. Lett. Drugs Ther., 63(1627), 97–98 (2021).
  • Li M , LouF, FanH. SARS-CoV-2 variants of concern Delta: a great challenge to prevention and control of COVID-19. Signal. Transduct. Target Ther., 6(1), 349 (2021).
  • Desai AN , MajumderMS. What is herd immunity?JAMA, 324(20), 2113 (2020).
  • Papachristodoulou E , KakoullisL, ParperisK, PanosG. Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge. Pathog. Dis., 78(3), (2020).
  • Matin S , TaleiS, DalimiA, DadkhahM, GhorbaniM, MolaeiS. COVID-19 and hydatidosis infections: is there any relationship?Iran J. Parasitol., 16(2), 343–345 (2021).
  • Paraskevis D , KostakiEG, MagiorkinisG, PanayiotakopoulosG, SourvinosG, TsiodrasS. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol., 79, 104212 (2020).
  • Mousavizadeh L , GhasemiS. Genotype and phenotype of COVID-19: their roles in pathogenesis. J. Microbiol. Immunol. Infect., 54(2), 159–163 (2021).
  • Chen Y , LiuQ, GuoD. Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol., 92(4), 418–423 (2020).
  • Kumar SNR , MauryaVKSaxenaSK. Coronavirus disease 2019 (COVID-19), epidemiology, pathogenesis, diagnosis, and therapeutics. In: Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).SaxenaSK ( Ed.). Centre for Advanced Research, King George’s Medical University, Lucknow, India, 23–31 (2020).
  • Wu A , PengY, HuangBet al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 27(3), 325–328 (2020).
  • Perlman S , NetlandJ. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol., 7(6), 439–450 (2009).
  • Maier HJ , BickertonE, BrittonP. Preface. Coronaviruses. Methods Mol. Biol.1282 v (2015).
  • Wen F , YuH, GuoJ, LiY, LuoK, HuangS. Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. J. Infect., 80(6), 671–693 (2020).
  • Lou J , TianSJ, NiuSMet al. Coronavirus disease 2019: a bibliometric analysis and review. Eur. Rev. Med. Pharmacol. Sci., 24(6), 3411–3421 (2020).
  • Schoeman D , FieldingBC. Coronavirus envelope protein: current knowledge. Virol J., 16(1), 69 (2019).
  • Salata C , CalistriA, AlvisiG, CelestinoM, ParolinC, PalùG. Ebola virus entry: from molecular characterization to drug discovery. Viruses, 11(3), 274 (2019).
  • Delvecchio R , HigaLM, PezzutoPet al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses, 8(12), 322 (2016).
  • Omotade TO , RoyCR. Manipulation of host cell organelles by intracellular pathogens. Microbiol. Spectr., 7(2), 6484 (2019).
  • Praveen D , ChowdaryPR, AanandhiMV. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int. J. Antimicrob. Agents, 55(5), 105967 (2020).
  • Algaissi A , HashemAM. Evaluation of MERS-CoV neutralizing antibodies in sera using live virus microneutralization assay. Methods Mol. Biol., 2099, 107–116 (2020).
  • Goo J , JeongY, ParkYSet al. Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein. Virus Res., 278, 197863 (2020).
  • Pinto D , ParkYJ, BeltramelloMet al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295 (2020).
  • Hijikata A , Shionyu-MitsuyamaC, NakaeSet al. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. FEBS Lett., 594(12), 1960–1973 (2020).
  • Mirza MU , FroeyenM. Structural elucidation of SARS-CoV-2 vital proteins: computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 10(4), 320–328 (2020).
  • Saha P , BanerjeeAK, TripathiPP, SrivastavaAK, RayU. A virus that has gone viral: amino acid mutation in S protein of Indian isolate of coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Biosci. Rep., 40(5), (2020).
  • Meyer D , SielaffF, HammamiM, Böttcher-FriebertshäuserE, GartenW, SteinmetzerT. Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem. J., 452(2), 331–343 (2013).
  • Wrapp D , WangN, CorbettKSet al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263 (2020).
  • Hoffmann M , Kleine-WeberH, SchroederSet al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e278 (2020).
  • Rahman N , BasharatZ, YousufM, CastaldoG, RastrelliL, KhanH. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules, 25(10), 2271 (2020).
  • Shirato K , KawaseM, MatsuyamaS. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol., 87(23), 12552–12561 (2013).
  • Sternberg A , MckeeDL, NaujokatC. Novel drugs targeting the SARS-CoV-2/COVID-19 machinery. Curr. Top. Med. Chem., 20(16), 1423–1433 (2020).
  • Cao YC , DengQX, DaiSX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: an evaluation of the evidence. Travel Med. Infect. Dis., 35, 101647 (2020).
  • Gordon CJ , TchesnokovEP, FengJY, PorterDP, GötteM. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 295(15), 4773–4779 (2020).
  • Mcbride R , Van ZylM, FieldingBC. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8), 2991–3018 (2014).
  • Sarma P , ShekharN, PrajapatMet al. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J. Biomol. Struct. Dyn., 39(8), 2724–2732 (2021).
  • Bojkova D , KlannK, KochBet al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 583(7816), 469–472 (2020).
  • Kirchdoerfer RN , CottrellCA, WangNet al. Pre-fusion structure of a human coronavirus spike protein. Nature, 531(7592), 118–121 (2016).
  • Gupta MK , VemulaS, DondeR, GoudaG, BeheraL, VaddeR. In silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn., 39(7), 2617–2627 (2021).
  • Lundberg L , PinkhamC, BaerAet al. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res., 100(3), 662–672 (2013).
  • Tu YF , ChienCS, YarmishynAAet al. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 21(7), 2657 (2020).
  • Caly L , DruceJD, CattonMG, JansDA, WagstaffKM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 178, 104787 (2020).
  • Rezaee H , PourkarimF, Pourtaghi-AnvarianS, Entezari-MalekiT, Asvadi-KermaniT, Nouri-VaskehM. Drug-drug interactions with candidate medications used for COVID-19 treatment: an overview. Pharmacol. Res. Perspect., 9(1), e00705 (2021).
  • Talukdar D , JainV, BalaramnavarV, SrivastavaSP, SivanandP, GuptaMM. Potential drugs for COVID-19 treatment management with their contraindications and drug-drug interaction. Preprintshttps://doi.org/10.20944/preprints202105.0690.v1 (2021) ( Epub ahead of print).
  • Yang K . What do we know about remdesivir drug interactions?Clin. Transl. Sci., 13(5), 842–844 (2020).
  • Kumar D , TrivediN. Disease-drug and drug-drug interaction in COVID-19: risk and assessment. Biomed. Pharmacother., 139, 111642 (2021).
  • Hashem AM , AlghamdiBS, AlgaissiAAet al. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: a narrative review. Travel Med. Infect. Dis., 35, 101735 (2020).
  • Sachdeva C , WadhwaA, KumariA, HussainF, JhaP, KaushikNK. In silico potential of approved antimalarial drugs for repurposing against COVID-19. Omics, 24(10), 568–580 (2020).
  • Weniger H , World Health Organization. Review of side effects and toxicity of chloroquine / by H. Weniger. (WHO/MAL/79.906) (1979). https://apps.who.int/iris/handle/10665/65773
  • Goel PGV . Chloroquine. StatPearls Publishing, FL, USA (2019).
  • Freedman A , SteinbergVL. Chloroquine in rheumatoid arthritis; a double blindfold trial of treatment for one year. Ann. Rheum. Dis., 19(3), 243–250 (1960).
  • Biot C , DaherW, ChavainNet al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 49(9), 2845–2849 (2006).
  • Colson P , RolainJM, LagierJC, BrouquiP, RaoultD. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 55(4), 105932 (2020).
  • Pahan P , PahanK. Smooth or risky revisit of an old malaria drug for COVID-19?J. Neuroimmune Pharmacol., 15(2), 174–180 (2020).
  • Vincent MJ , BergeronE, BenjannetSet al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2, 69 (2005).
  • Wang N , HanS, LiuRet al. Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus. Phytomedicine, 79, 153333 (2020).
  • Schrezenmeier E , DörnerT. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol., 16(3), 155–166 (2020).
  • Rainsford KD , ParkeAL, Clifford-RashotteM, KeanWF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 23(5), 231–269 (2015).
  • Roche PA , FurutaK. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol., 15(4), 203–216 (2015).
  • Khatooni EBF , AbdiZ. Safety and efficacy of hydroxychloroquine and chloroquine in treatment of COVID-19: a rapid review of evidence. Health Tech. Asmnt. Act, 4(1), e5864 (2020).
  • Pereira BB . Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. J. Toxicol. Environ. Health B Crit. Rev., 23(4), 177–181 (2020).
  • Liu J , CaoR, XuMet al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 6, 16 (2020).
  • Naghipour S , GhodousiM, RahseparS, ElyasiS. Repurposing of well-known medications as antivirals: hydroxychloroquine and chloroquine – from HIV-1 infection to COVID-19. Expert Rev. Anti Infect. Ther., 18(11), 1119–1133 (2020).
  • Savarino A , DiTrani L, DonatelliI, CaudaR, CassoneA. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis., 6(2), 67–69 (2006).
  • Wang M , CaoR, ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 30(3), 269–271 (2020).
  • Yao X , YeF, ZhangMet al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 71(15), 732–739 (2020).
  • Huang M , LiM, XiaoFet al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci. Rev., 7(9), 1428–1436 (2020).
  • Borba MDaVF , SampaioVs, AlexandreMaet al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: preliminary safety results of a randomized, double-blinded, Phase IIb clinical trial (CloroCOVID-19 study). MedRxivhttps://doi.org/10.1101/2020.04.07.20056424 (2020) ( Epub ahead of print).
  • Lee SH , SonH, PeckKR. Can post-exposure prophylaxis for COVID-19 be considered as an outbreak response strategy in long-term care hospitals?Int. J. Antimicrob. Agents, 55(6), 105988 (2020).
  • Ullah W , AbdullahHM, RoomiSet al. Safety and efficacy of hydroxychloroquine in COVID-19: a systematic review and meta-analysis. J. Clin. Med. Res., 12(8), 483–491 (2020).
  • Cortegiani A , IngogliaG, IppolitoM, GiarratanoA, EinavS. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 57, 279–283 (2020).
  • Patil VM , SinghalS, MasandN. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: efficacy, safety and clinical trials. Life Sci., 254, 117775 (2020).
  • Saghir SaM , AlgabriNA, AlagawanyMMet al. Chloroquine and hydroxychloroquine for the prevention and treatment of COVID-19: a fiction, hope or hype? An updated review. Ther. Clin. Risk Manag., 17, 371–387 (2021).
  • Chen J , LiuD, LiuLet al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban, 49(2), 215–219 (2020).
  • Yu B , LiC, ChenPet al. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci. China Life Sci., 63(10), 1515–1521 (2020).
  • Chowdhury AT , ShahbazM, KarimR, IslamJ, GuoD, HeS. A comparative study on ivermectin-doxycycline and hydroxychloroquine-azithromycin therapy on COVID-19 patients. EJMO, 5(1), 63–70 (2020).
  • Gao J , TianZ, YangX. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 14(1), 72–73 (2020).
  • Spinelli FR , CeccarelliF, DiFranco M, ContiF. To consider or not antimalarials as a prophylactic intervention in the SARS-CoV-2 (COVID-19) pandemic. Ann. Rheum. Dis., 79(5), 666–667 (2020).
  • Chen ZHJ , ZhangZ, JiangSet al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. Medrxivhttps://doi.org/10.1101/2020.03.22.20040758 (2020) ( Epub ahead of print).
  • Fossa AA , WisialowskiT, DuncanJN, DengS, DunneM. Azithromycin/chloroquine combination does not increase cardiac instability despite an increase in monophasic action potential duration in the anesthetized guinea pig. Am. J. Trop. Med. Hyg., 77(5), 929–938 (2007).
  • Gautret P , LagierJC, ParolaPet al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 56(1), 105949 (2020).
  • Fiolet T , GuihurA, RebeaudME, MulotM, Peiffer-SmadjaN, Mahamat-SalehY. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clin. Microbiol. Infect., 27(1), 19–27 (2021).
  • Ghazy RM , AlmaghrabyA, ShaabanRet al. A systematic review and meta-analysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Sci. Rep., 10(1), 22139 (2020).
  • Geleris J , SunY, PlattJet al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med., 382(25), 2411–2418 (2020).
  • Rosenberg ES , DufortEM, UdoTet al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA, 323(24), 2493–2502 (2020).
  • Hussein RK , ElkhairHM. Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxychloroquine against main protease of COVID-19. J. Mol. Struct., 1231, 129979 (2021).
  • Chowdhury MS , RathodJ, GernsheimerJ. A rapid systematic review of clinical trials utilizing chloroquine and hydroxychloroquine as a treatment for COVID-19. Acad. Emerg. Med., 27(6), 493–504 (2020).
  • Mahévas M , TranVT, RoumierMet al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. Medrxivhttps://doi.org/10.1101/2020.04.10.20060699 (2020) ( Epub ahead of print).
  • Mahévas M , TranVT, RoumierMet al. Clinical efficacy of hydroxychloroquine in patients with COVID-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ, 369, m1844 (2020).
  • Skipper CP , PastickKA, EngenNWet al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann. Intern. Med., 173(8), 623–631 (2020).
  • Horby P , MafhamM, LinsellLet al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. MedRxivhttps://doi.org/10.1101/2020.07.15.20151852 (2020) ( Epub ahead of print).
  • Patrì A , FabbrociniG. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and treatment?J. Am. Acad. Dermatol., 82(6), e221 (2020).
  • Mitjà O , Corbacho-MonnéM, UbalsMet al. A cluster-randomized trial of hydroxychloroquine for prevention of COVID-19. N. Engl. J. Med., 384(5), 417–427 (2021).
  • Boulware DR , PullenMF, BangdiwalaASet al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N. Engl. J. Med., 383(6), 517–525 (2020).
  • Tang W , CaoZ, HanMet al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ, 369, m1849 (2020).
  • Kamran SM , MoeedHA, MirzaZEet al. Clearing the fog: is hydroxychloroquine effective in reducing coronavirus disease-2019 progresression? A randomized controlled trial. Cureus, 13(3), e14186 (2021).
  • Ip A , AhnJ, ZhouYet al. Hydroxychloroquine in the treatment of outpatients with mildly symptomatic COVID-19: a multi-center observational study. BMC Infect. Dis., 21(1), 72 (2021).
  • Oymak Y , KarapinarTH, Devrimİ. Why G6PD deficiency should be screened before COVID-19 treatment with hydroxychloroquine?J. Pediatr. Hematol. Oncol., 43(1), 35–36 (2021).
  • Tleyjeh IM , KashourZ, AldosaryOet al. Cardiac toxicity of chloroquine or hydroxychloroquine in patients with COVID-19: a systematic review and meta-regression analysis. Mayo Clin. Proc. Innov. Qual. Outcomes, 5(1), 137–150 (2021).
  • Van den Broek MPH , MöhlmannJE, AbelnBGS, LiebregtsM, Van DijkVF, VanDe Garde EMW. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth. Heart J., 28(7–8), 406–409 (2020).
  • Vick DJ . Glucose-6-phosphate dehydrogenase deficiency and COVID-19 infection. Mayo Clin. Proc., 95(8), 1803–1804 (2020).
  • Chorin E , WadhwaniL, MagnaniSet al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm, 17(9), 1425–1433 (2020).
  • Song Y , ZhangM, YinLet al. COVID-19 treatment: close to a cure? A rapid review of pharmacotherapies for the novel coronavirus (SARS-CoV-2). Int. J. Antimicrob. Agents, 56(2), 106080 (2020).
  • WHO . WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. http://www.who.int/news/item/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-COVID-19
  • Ho TC , WangYH, ChenYLet al. Chloroquine and hydroxychloroquine: efficacy in the treatment of the COVID-19. Pathogens, 10(2), 217 (2021).
  • Parperis K . To consider or not antimalarials as a prophylactic intervention in the SARS-CoV-2 (COVID-19) pandemic. Ann. Rheum. Dis., 80(1), e8 (2021).
  • Li G , LiY, LiZ, ZengM. Artemisinin-based and Other Antimalarials: Detailed Account of Studies by Chinese Scientists Who Discovered and Developed Them.Academic PressLondon, UK, 1–736 (2017).
  • Romero MR , EfferthT, SerranoMAet al. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antiviral Res., 68(2), 75–83 (2005).
  • Canivet C , MenasriaR, RhéaumeC, PiretJ, BoivinG. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone. Antiviral Res., 123, 105–113 (2015).
  • Efferth T , RomeroMR, WolfDG, StammingerT, MarinJJ, MarschallM. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis., 47(6), 804–811 (2008).
  • Drouot E , PiretJ, BoivinG. Artesunate demonstrates in vitro synergism with several antiviral agents against human cytomegalovirus. Antivir. Ther., 21(6), 535–539 (2016).
  • Dediego ML , Nieto-TorresJL, Regla-NavaJAet al. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J. Virol., 88(2), 913–924 (2014).
  • Lee JY , BaeS, MyoungJ. Middle East respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-κB. J. Microbiol. Biotechnol., 29(8), 1316–1323 (2019).
  • Brian DA , BaricRS. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol., 287, 1–30 (2005).
  • Catanzaro M , FagianiF, RacchiM, CorsiniE, GovoniS, LanniC. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal. Transduct. Target Ther., 5(1), 84 (2020).
  • Xu H , HeY, YangXet al. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford), 46(6), 920–926 (2007).
  • Moore JB , JuneCH. Cytokine release syndrome in severe COVID-19. Science, 368(6490), 473–474 (2020).
  • Cao R , HuH, LiYet al. Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect. Dis., 6(9), 2524–2531 (2020).
  • Nie C , TrimpertJ, MoonSet al. In vitro efficacy of Artemisia extracts against SARS-CoV-2. Virol. J., 18(1), 182 (2021).
  • Russo M , MocciaS, SpagnuoloC, TedescoI, RussoGL. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 328, 109211 (2020).
  • Zhou Y , GilmoreK, RamirezSet al. In vitro efficacy of artemisinin-based treatments against SARS-CoV-2. Sci. Rep., 11(1), 14571 (2021).
  • Nair MS , HuangY, FidockDAet al. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol., 274, 114016 (2021).
  • Hu Y , LiuM, QinHet al. Artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro. Front. Cell. Infect. Microbiol., 11, 680127 (2021).
  • Krishna S , AugustinY, WangJet al. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol., 37(1), 8–11 (2021).
  • Uckun FM , SaundS, WindlassH, TrieuV. Repurposing anti-malaria phytomedicine artemisinin as a COVID-19 drug. Front. Pharmacol., 12, 649532 (2021).
  • Fry MPM . Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4’-chlorophenyl) cyclohexyl]-3-hydroxy-1, 4-naphthoquinone (566C80). Biochem. Pharmacol., 43(7), 1545–1553 (1992).
  • Atovaquone and azithromycin combination for confirmed COVID-19 infection. NCT04339426. https://clinicaltrials.gov/ct2/show/NCT04339426
  • Singh S , FlorezH. Coronavirus disease 2019 drug discovery through molecular docking. F1000Res, 9, 502 (2020).
  • Farag A , WangP, BoysInet al. Identification of atovaquone, ouabain and mebendazole as FDA approved drugs targeting SARS-CoV-2 (version 4). ChemRxivhttps://doi.org/10.26434/chemrxiv.12003930.v4 (2021) ( Epub ahead of print).
  • Marak BN , DowarahJ, KhiangteL, SinghVP. Step toward repurposing drug discovery for COVID-19 therapeutics through in silico approach. Drug Dev. Res., 82(3), 374–392 (2021).
  • Carter-Timofte ME , ArulanandamR, KurmashevaNet al. Antiviral potential of the antimicrobial drug atovaquone against SARS-CoV-2 and emerging variants of concern. ACS Infect. Dis., 7(11), 3034–3051 (2021).
  • González Canga A , SahagúnPrieto AM, DiezLiébana MJ, FernándezMartínez N, SierraVega M, GarcíaVieitez JJ. The pharmacokinetics and interactions of ivermectin in humans – a mini-review. AAPS J, 10(1), 42–46 (2008).
  • Laing R , GillanV, DevaneyE. Ivermectin - old drug, new tricks?Trends Parasitol., 33(6), 463–472 (2017).
  • Azam F , TabanIM, EidEEMet al. An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α. J. Biomol. Struct. Dyn., https://doi.org/10.1080/07391102.2020.18410281–14 (2020) ( Epub ahead of print).
  • Azeem S , AshrafM, RasheedMA, AnjumAA, HameedR. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pak. J. Pharm. Sci., 28(2), 597–602 (2015).
  • Chaccour C , HammannF, Ramón-GarcíaS, RabinovichNR. Ivermectin and COVID-19: keeping rigor in times of urgency. Am. J. Trop. Med. Hyg., 102(6), 1156–1157 (2020).
  • Götz V , MagarL, DornfeldDet al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep., 6, 23138 (2016).
  • Lv C , LiuW, WangBet al. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res., 159, 55–62 (2018).
  • Rizzo E . Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn Schmiedebergs Arch. Pharmacol., 393(7), 1153–1156 (2020).
  • Gupta D , SahooAK, SinghA. Ivermectin: potential candidate for the treatment of Covid 19. Braz. J. Infect. Dis., 24(4), 369–371 (2020).
  • Hashim HA , MauloodMF, RasheedAM, FatakDF, KabahKK, AbdulamirAS. Controlled randomized clinical trial on using Ivermectin with doxycycline for treating COVID-19 patients in Baghdad, Iraq. MedRxivhttps://doi.org/10.1101/2020.10.26.20219345 (2020) ( Epub ahead of print).
  • Rajter JC , ShermanMS, FattehN, VogelF, SacksJ, RajterJJ. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: the ivermectin in COVID nineteen study. Chest, 159(1), 85–92 (2021).
  • Rajter JC , ShermanMS, FattehN, VogelF, SacksJ, RajterJJ. ICON (ivermectin in covid nineteen) study: use of ivermectin is associated with lower mortality in hospitalized patients with COVID-19. Chest, 159(1), 85–92 (2021).
  • Ahmed S , KarimMM, RossAGet al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int. J. Infect. Dis., 103, 214–216 (2021).
  • López-Medina E , LópezP, HurtadoICet al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA, 325(14), 1426–1435 (2021).
  • Bryant A , LawrieTA, DowswellTet al. Ivermectin for prevention and treatment of COVID-19 infection: a systematic review, meta-analysis, and trial sequential analysis to inform clinical guidelines. Am. J. Ther., 28(4), e434–e460 (2021).
  • Kaur H , ShekharN, SharmaS, SarmaP, PrakashA, MedhiB. Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes. Pharmacol. Rep., 73(3), 736–749 (2021).
  • Ivermectin for COVID-19: real-time meta analysis of 65 studies. https://ivmmeta.com
  • Altay O , MohammadiE, LamSet al. Current Status of COVID-19 therapies and drug repositioning applications. iScience, 23(7), 101303 (2020).
  • Haffizulla J , HartmanA, HoppersMet al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase IIb/III trial. Lancet Infect. Dis., 14(7), 609–618 (2014).
  • Rossignol JF . Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res., 110, 94–103 (2014).
  • Tilmanis D , Van BaalenC, OhDY, RossignolJF, HurtAC. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral Res., 147, 142–148 (2017).
  • Rossignol JF . Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 9(3), 227–230 (2016).
  • Calderón JM , ZerónHM, PadmanabhanS. Treatment with hydroxychloroquine vs hydroxychloroquine + nitazoxanide in COVID-19 patients with risk factors for poor prognosis: a structured summary of a study protocol for a randomised controlled trial. Trials, 21(1), 504 (2020).
  • Padmanabhan S , PadmanabhanK. “The devil is in the dosing” – targeting the interferon pathway by repositioning nitazoxanide against COVID-19. https://doi.org/10.13140/RG.2.2.22854.83527 (2020) ( Epub ahead of print).
  • Hong SK , KimHJ, SongCS, ChoiIS, LeeJB, ParkSY. Nitazoxanide suppresses IL-6 production in LPS-stimulated mouse macrophages and TG-injected mice. Int. Immunopharmacol., 13(1), 23–27 (2012).
  • Mehta P , McauleyDF, BrownM, SanchezE, TattersallRS, MansonJJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229), 1033–1034 (2020).
  • Miner K , LabitzkeK, LiuBet al. Drug repurposing: the anthelmintics niclosamide and nitazoxanide are potent TMEM16A antagonists that fully bronchodilate airways. Front. Pharmacol., 10, 51 (2019).
  • Rocco PRM , SilvaPL, CruzFFet al. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. Eur. Respir. J., 58(1), 2003725 (2021).
  • Elalfy H , BesheerT, El-MeseryAet al. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID-19. J. Med. Virol., 93(5), 3176–3183 (2021).
  • Kelleni MT . NSAIDs and Kelleni’s protocol as potential early COVID-19 treatment game changer: could it be the final countdown? .Inflammopharmacologyhttps://doi.org/10.1007/s10787-021-00896-7, 1–6 (2021) ( Epub ahead of print).
  • Pepperrell T , PilkingtonV, OwenA, WangJ, HillAM. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19. J. Virus Erad., 6(2), 52–60 (2020).
  • Rajoli RKR , PertinezH, ArshadUet al. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. Br. J. Clin. Pharmacol., 87(4), 2078–2088 (2021).
  • Blum VF , CimermanS, HunterJRet al. Nitazoxanide superiority to placebo to treat moderate COVID-19 – a pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine, 37, 100981 (2021).
  • Cadegiani FA , GorenA, WambierCG, MccoyJ. Early COVID-19 therapy with azithromycin plus nitazoxanide, ivermectin or hydroxychloroquine in outpatient settings significantly improved COVID-19 outcomes compared to known outcomes in untreated patients. New Microbes New Infect., 43, 100915 (2021).
  • Olagunju A , FowotadeA, OlagunoyeAet al. Efficacy and safety of nitazoxanide plus atazanavir/ritonavir for the treatment of moderate to severe COVID-19 (NACOVID): a structured summary of a study protocol for a randomised controlled trial. Trials, 22(1), 3 (2021).
  • Sayed AM , KhalafAM, AbdelrahimMEA, ElgendyMO. Repurposing of some anti-infective drugs for COVID-19 treatment: a surveillance study supported by an in silico investigation. Int. J. Clin. Pract., 75(4), e13877 (2021).
  • MendietaZerón H , MenesesCalderón J, PaniaguaCoria Let al. Nitazoxanide as an early treatment to reduce the intensity of COVID-19 outbreaks among health personnel. World Acad. Sci. J., 3(3), 23 (2021).
  • Efficacy of Nitazoxanide in reducing the viral load in COVID-19 patients. Randomized, placebo-controlled, single-blinded, parallel group, pilot study. MedRxivhttps://doi.org/10.1101/2021.03.03.21252509 (2021) ( Epub ahead of print).
  • Chen W , MookRAJr, PremontRT, WangJ. Niclosamide: beyond an antihelminthic drug. Cell. Signal., 41, 89–96 (2018).
  • Xu M , LeeEM, WenZet al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 22(10), 1101–1107 (2016).
  • Wu CJ , JanJT, ChenCMet al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother., 48(7), 2693–2696 (2004).
  • Xu J , ShiPY, LiH, ZhouJ. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect. Dis., 6(5), 909–915 (2020).
  • Ko M , ChangSY, ByunSYet al. Screening of FDA-approved drugs using a MERS-CoV clinical isolate from South Korea identifies potential therapeutic options for COVID-19. Viruses, 13(4), 651(2021).
  • Romani D , NoureddineO, IssaouiN, BrandánSA. Properties and reactivities of niclosamide in different media, a potential antiviral to treatment of COVID-19 by using DFT calculations and molecular docking. Biointerface Res. Appl. Chem, 10(6), 7295–7328 (2020).
  • Gao K , NguyenDD, ChenJ, WangR, WeiGW. Repositioning of 8565 existing drugs for COVID-19. J. Phys. Chem. Lett., 11(13), 5373–5382 (2020).
  • Pindiprolu S , PindiproluSH. Plausible mechanisms of niclosamide as an antiviral agent against COVID-19. Med. Hypotheses, 140, 109765 (2020).
  • Gassen NC , PapiesJ, BajajTet al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxivhttps://doi.org/10.1101/2020.04.15.9972542020.2004.2015.997254 (2020) ( Epub ahead of print).
  • Das S , SarmahS, LyndemS, SinghaRoy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn., 39(9), 3347–3357 (2021).
  • Backer V , SjöbringU, SonneJet al. A randomized, double-blind, placebo-controlled phase I trial of inhaled and intranasal niclosamide: a broad spectrum antiviral candidate for treatment of COVID-19. Lancet Reg. Health Eur., 4, 100084 (2021).
  • Pascoalino BS , CourtemancheG, CordeiroMT, GilLH, Freitas-JuniorL. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Res, 5, 2523 (2016).
  • Tonelli M , SimoneM, TassoBet al. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg. Med. Chem., 18(8), 2937–2953 (2010).
  • Farag A , WangP, BoysINet al. Identification of atovaquone, ouabain and mebendazole as FDA approved drugs targeting SARS-CoV-2 (Version 4). Chemrxivhttps://doi.org/10.26434/chemrxiv.12003930.v4 (2020) ( Epub ahead of print).
  • Wang Z , GuoK, GaoPet al. Identification of repurposable drugs and adverse drug reactions for various courses of COVID-19 based on single-cell RNA sequencing data. ArXiv, 2005.07856v2 (2020) ( Epub ahead of print).
  • Law JN , AkersK, TasninaNet al. Interpretable network propagation with application to expanding the repertoire of human proteins that interact with SARS-CoV-2. GigaSci., 10(12), https://doi.org/10.1093/gigascience/giab082 (2021) ( Epub ahead of print).
  • Hajjo R , TropshaA. A systems biology workflow for drug and vaccine repurposing: identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality. Pharm. Res., 37(11), 212 (2020).
  • Repurposed antiviral drugs for COVID-19 – interim WHO solidarity trial results. N. Engl. J. Med., 384(6), 497–511 (2020).
  • Chan HCS , ShanH, DahounT, VogelH, YuanS. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 40(8), 592–604 (2019).
  • Alsafi MA , HughesDL, SaidMA. First COVID-19 molecular docking with a chalcone-based compound: synthesis, single-crystal structure and Hirshfeld surface analysis study. Acta Crystallogr. C Struct. Chem., 76(Pt 12), 1043–1050 (2020).
  • Barros RO , JuniorF, PereiraWS, OliveiraNMN, RamosRM. Interaction of drug candidates with various SARS-CoV-2 receptors: an in silico study to combat COVID-19. J. Proteome Res., 19(11), 4567–4575 (2020).
  • Hall DC Jr , JiHF. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 35, 101646 (2020).
  • Keshavarzi Arshadi A , WebbJ, SalemMet al. Artificial intelligence for COVID-19 drug discovery and vaccine development. Front. Artif. Intell., 3, 65 (2020).
  • Peele KA , PotlaDurthi C, SrihansaTet al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Inform. Med. Unlocked, 19, 100345 (2020).
  • Podlogar BL , MueggeI, BriceLJ. Computational methods to estimate drug development parameters. Curr. Opin. Drug Discov. Devel., 4(1), 102–109 (2001).
  • Lestari K , SitorusT, InstiatyMegantara S, LevitaJ. Molecular docking of quinine, chloroquine and hydroxychloroquine to angiotensin converting enzyme 2 (ACE2) receptor for discovering new potential COVID-19 antidote. J. Adv. Pharm. Res., 10(2), 1–4 (2020).
  • Shoichet BK . Virtual screening of chemical libraries. Nature, 432(7019), 862–865 (2004).
  • Melville JL , BurkeEK, HirstJD. Machine learning in virtual screening. Comb. Chem. High Throughput Screen, 12(4), 332–343 (2009).
  • Carpenter KA , HuangX. Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: a review. Curr. Pharm. Des., 24(28), 3347–3358 (2018).
  • Zhong F , XingJ, LiXet al. Artificial intelligence in drug design. Sci. China Life Sci., 61(10), 1191–1204 (2018).
  • Ahuja AS , ReddyVP, MarquesO. Artificial intelligence and COVID-19: a multidisciplinary approach. Integr. Med. Res., 9(3), 100434 (2020).
  • Pires C . A systematic review on the contribution of artificial intelligence in the development of medicines for COVID-2019. J. Pers. Med., 11(9), (2021).
  • Ke YY , PengTT, YehTKet al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J., 43(4), 355–362 (2020).
  • Kowalewski J , RayA. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon, 6(8), e04639 (2020).
  • Avchaciov K , BurmistrovaO, FedichevP. AI for the repurposing of approved or investigational drugs against COVID-19. ScienceOPENhttps://doi.org/10.13140/RG.2.2.20588.10886 (2020) ( Epub ahead of print).
  • Gysi Dm DVÍ , ZitnikMet al. Proceedings of the national academy of sciences network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci., 118(19), (2021).
  • Moskal M , BekerW, RoszakRet al. Suggestions for second-pass anti-COVID-19 drugs based on the artificial intelligence measures of molecular similarity, shape and pharmacophore distribution. ChemRxivhttps://doi.org/10.26434/chemrxiv.12084690.v2 (2020) ( Epub ahead of print).
  • Richardson P , GriffinI, TuckerCet al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 395(10223), e30–e31 (2020).
  • Stebbing J , PhelanA, GriffinIet al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 20(4), 400–402 (2020).
  • Kalil AC , PattersonTF, MehtaAKet al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N. Engl. J. Med., 384(9), 795–807 (2021).
  • Marconi VC , RamananAV, DeBono Set al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase III trial. Lancet Respir. Med., 9(12), 1407–1418 (2021).
  • Stebbing J , SánchezNievas G, FalconeMet al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci. Adv., 7(1), eabe4724 (2021).
  • Savage N . Tapping into the drug discovery potential of AI. http://www.nature.com/articles/d43747-021-00045-7
  • Zhavoronkov A , VanhaelenQ, OpreaTI. Will artificial intelligence for drug discovery impact clinical pharmacology?Clin. Pharmacol. Ther., 107(4), 780–785 (2020).
  • Bhhatarai B , WaltersWP, HopC, LanzaG, EkinsS. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater., 18(5), 418–422 (2019).
  • Bullock J , LuccioniA, PhamKH, LamCSN, Luengo-OrozM. Mapping the landscape of artificial intelligence applications against COVID-19. J. Artif. Intell. Res., 69, 807–845 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.