32
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Nanocarrier-Based Drug-Delivery System in Herpes Simplex Virus Treatment

& ORCID Icon
Pages 129-135 | Received 06 Sep 2022, Accepted 10 Feb 2023, Published online: 09 Mar 2023

References

  • James C , HarfoucheM , WeltonNJet al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ.98(5), 315–329 (2020).
  • Joob B , WiwanitkitV. Nanotechnology for health: a new useful technology in medicine. Med. J. D.Y. Patil Uni.10(5), 401–405 (2017).
  • Yang X , ShahSJ , WangZ , AgrahariV , PalD , MitraAK. Nanoparticle-based topical ophthalmic formulation for sustained release of stereoisomeric dipeptide prodrugs of ganciclovir. Drug Deliv.23(7), 2399–2409 (2016).
  • Xue J , WuT , DaiY , XiaY. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev.119(8), 5298–5415 (2019).
  • Tyo KM , LasnikAB , ZhangLet al. Sustained-release Griffithsin nanoparticle-fiber composites against HIV-1 and HSV-2 infections. J. Control Release321, 84–99 (2020).
  • Kumar A , VimalA , KumarA. Why Chitosan? From properties to perspective of mucosal drug delivery. Int. J. Biol. Macromol.91, 615–622 (2016).
  • Donalisio M , ArgenzianoM , RittàMet al. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int. J. Pharm.587, 119676 (2020).
  • Donalisio M , LeoneF , CivraAet al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics10(2), 46 (2018).
  • Donalisio M , ArgenzianoM , RittaMet al. Acyclovir-loaded sulfobutyl ether-beta-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int. J. Pharm.587, 119676 (2020).
  • Sangboonruang S , SemakulN , SookkreeSet al. Activity of propolis nanoparticles against HSV-2: promising approach to inhibiting infection and replication. Molecules27(8), 2560 (2022).
  • He X , XingR , LiuSet al. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem. Toxicol.44(4), 335–340 (2021).
  • Safarzadeh M , SadeghiS , AziziM , Rastegari-PouyaniM , PouriranR , HajiMolla Hoseini M. Chitin and chitosan as tools to combat COVID-19: a triple approach. Int. J. Biol. Macromol.183, 235–244 (2021).
  • Loutfy SA , ElberryMH , FarrohKYet al. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. Int. J. Nanomedicine15, 2699–2715 (2020).
  • Szymanska E , CzarnomysyR , JacynaJet al. Could spray-dried microbeads with chitosan glutamate be considered as promising vaginal microbicide carriers? The effect of process variables on the in vitro functional and physicochemical characteristics. Int. J. Pharm.568, 118558 (2019).
  • Szymanska E , KrzyzowskaM , CalKet al. Potential of mucoadhesive chitosan glutamate microparticles as microbicide carriers – antiherpes activity and penetration behavior across the human vaginal epithelium. Drug Deliv.28(1), 2278–2288 (2021).
  • Melk MM , El-HawarySS , MelekFRet al. Antiviral activity of zinc oxide nanoparticles mediated by Plumbago indica L. Extract against herpes simplex virus type 1 (HSV-1). Int. J. Nanomed.16, 8221–8233 (2021).
  • Abouaitah K , AllayhAK , WojnarowiczJ , ShakerYM , Swiderska-SrodaA , LojkowskiW. Nanoformulation composed of ellagic acid and functionalized zinc oxide nanoparticles inactivates DNA and RNA viruses. Pharmaceutics13(12), 2174 (2021).
  • Monavari SH , MirzaeiParsa MJ , BolouriB , EbrahimiSA , Ataei-PirkoohA. The inhibitory effect of Acyclovir loaded nano-niosomes against herpes simplex virus type-1 in cell culture. Med. J. Islam Repub. Iran28, 99 (2014).
  • Giongo V , FalangaA , DeMelo CPPet al. Antiviral potential of naphthoquinones derivatives encapsulated within liposomes. Molecules26(21), 6440 (2021).
  • Ron-Doitch S , SawodnyB , KuhbacherAet al. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control Release229, 163–171 (2016).
  • Kopecek J , KopeckovaP. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev.62(2), 122–149 (2010).
  • Frich CK , KrugerF , WaltherRet al. Non-covalent hitchhiking on endogenous carriers as a protraction mechanism for antiviral macromolecular prodrugs. J. Control Release294, 298–310 (2019).
  • Guerrero-Beltran C , Cena-DiezR , Sepulveda-CrespoDet al. Carbosilane dendrons with fatty acids at the core as a new potential microbicide against HSV-2/HIV-1 co-infection. Nanoscale9(44), 17263–17273 (2017).
  • Dey P , BergmannT , Cuellar-CamachoJLet al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano12(7), 6429–6442 (2018).
  • Aderibigbe BA . Metal-based nanoparticles for the treatment of infectious diseases. Molecules22(8), 1370 (2017).
  • Paradowska E , StudzinskaM , JablonskaAet al. Antiviral effect of nonfunctionalized gold nanoparticles against herpes simplex virus type-1 (HSV-1) and possible contribution of near-field interaction mechanism. Molecules26(19), 5960 (2021).
  • Krzyzowska M , ChodkowskiM , JanickaMet al. Lactoferrin-functionalized noble metal nanoparticles as new antivirals for HSV-2 infection. Microorganisms10(1), 110 (2022).
  • Valimaa H , TenovuoJ , WarisM , HukkanenV. Human lactoferrin but not lysozyme neutralizes HSV-1 and inhibits HSV-1 replication and cell-to-cell spread. Virol. J.6(1), 53 (2009).
  • Cagno V , AndreozziP , D’alicarnassoMet al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater.17(2), 195–203 (2018).
  • Rogers JV , ParkinsonCV , ChoiYW , SpeshockJL , HussainSM. A preliminary assessment of silver nanoparticle inhibition of Monkeypox virus plaque formation. Nanoscale Res. Lett.3(4), 129–133 (2008).
  • Hu RL , LiSR , KongFJ , HouRJ , GuanXL , GuoF. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol. Res.13(3), 7022–7028 (2014).
  • Gaikwad S , IngleA , GadeAet al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine8, 4303–4314 (2013).
  • Lin LT , ChenTY , ChungCYet al. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J. Virol.85(9), 4386–4398 (2011).
  • Zhang XF , DaiYC , ZhongWet al. Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorg. Med. Chem.20(4), 1616–1623 (2012).
  • Orlowski P , KowalczykA , TomaszewskaEet al. Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses10(10), 524 (2018).
  • Orlowski P , TomaszewskaE , GniadekMet al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLOS ONE9(8), e104113 (2014).
  • Mishra YK , AdelungR , RohlC , ShuklaD , SporsF , TiwariV. Virostatic potential of micro-nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res.92(2), 305–312 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.