2,204
Views
0
CrossRef citations to date
0
Altmetric
Review

Physiologically Based Pharmacokinetic Models for the Optimization of Antiretroviral Therapy: Recent Progress and Future Perspective

, , , , &
Pages 871-890 | Published online: 27 Aug 2013

References

  • Marzolini C , TelentiA, DecosterdLA, GreubG, BiollazJ, BuclinT. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS15(1) , 71–75 (2001).
  • Stahle L , MobergL, SvenssonJO, SonnerborgA. Efavirenz plasma concentrations in HIV-infected patients: inter- and intraindividual variability and clinical effects. Ther. Drug Monit.26(3) , 267–270 (2004).
  • Josephson F , AnderssonMC, FlamholcL et al. The relation between treatment outcome and efavirenz, atazanavir or lopinavir exposure in the NORTHIV trial of treatment-naive HIV-1 infected patients. Eur. J. Clin. Pharmacol. 66(4) , 349–357 (2010).
  • Gonzalez de Requena D , BonoraS, ViganoO et al. Comparative evaluation of seven resistance interpretation algorithms and their derived genotypic inhibitory quotients for the prediction of 48 week virological response to darunavir-based salvage regimens. J. Antimicrob. Chemother. 66(1) , 192–200 (2011).
  • Hoefnagel JG , van der Lee MJ, Koopmans PP et al. The genotypic inhibitory quotient and the (cumulative) number of mutations predict the response to lopinavir therapy. AIDS20(7) , 1069–1071 (2006).
  • Marzolini C , ElziL, GibbonsS et al. Prevalence of comedications and effect of potential drug–drug interactions in the Swiss HIV Cohort Study. Antivir. Ther. 15(3) , 413–423 (2010).
  • Marzolini C , BackD, WeberR et al. Ageing with HIV: medication use and risk for potential drug–drug interactions. J. Antimicrob. Chemother. 66(9) , 2107–2111 (2011).
  • Bosgra S , van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit. Rev. Toxicol.42(9) , 751–767 (2012).
  • Peters S . Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin. Pharmacokinet.47(4) , 261–275 (2008).
  • Teorell T . Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch. Int. Pharmacod.57 , 205–225 (1937).
  • Rowland M , PeckC, TuckerG. Physiologically-based pharmacokinetics in drug development and regulatory science. Ann. Rev. Pharmacol. Toxicol.51(1) , 45–73 (2011).
  • Kobayashi D , NozawaT, ImaiK, NezuJ, TsujiA, TamaiI. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther.306(2) , 703–708 (2003).
  • Evers R , KoolM, van Deemter L et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J. Clin. Invest.101(7) , 1310–1319 (1998).
  • Walgren RA , KarnakyKJ Jr, Lindenmayer GE, Walle T. Efflux of dietary flavonoid quercetin 4‘-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. J. Pharmacol. Exp. Ther.294(3) , 830–836 (2000).
  • Lagas JS , VlamingML, SchinkelAH. Pharmacokinetic assessment of multiple ATP-binding cassette transporters: the power of combination knockout mice. Mol. Interv.9(3) , 136–145 (2009).
  • Thelen K , DressmanJB. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol.61(5) , 541–558 (2009).
  • Hartkoorn RC , KwanWS, ShallcrossV et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet. Genomics 20(2) , 112–120 (2010).
  • Poulin P , TheilFP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci.91(1) , 129–156 (2002).
  • Brightman FA , LeahyDE, SearleGE, ThomasS. Application of a generic physiologically based pharmacokinetic model to the estimation of xenobiotic levels in human plasma. Drug Metab. Dispos.34(1) , 94–101 (2006).
  • Parrott N , PaquereauN, CoassoloP, LavéT. An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J. Pharm. Sci.94(10) , 2327–2343 (2005).
  • Bouzom F , BallK, PerdaemsN, WaltherB. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharm. Drug Dispos.33(2) , 55–71 (2012).
  • Jamei M , MarciniakS, FengK, BarnettA, TuckerG, Rostami-HodjeganA. The Simcyp population-based ADME simulator. Expert Opin. Drug Metab. Toxicol.5(2) , 211–223 (2009).
  • Jones H , ParrottN, OhlenbuschG, LavéT. Predicting pharmacokinetic food effects using biorelevant solubility media and physiologically based modelling. Clin. Pharmacokinet.45(12) , 1213–1226 (2006).
  • Reddy MB , ClewellIII HJ, Lave T, Andersen ME. Physiologically based pharmacokinetic modeling: a tool for understanding ADMET properties and extrapolating to human. In: New Insights into Toxicity and Drug Testing. Gowder S (Ed.). InTech, NY, USA, 197–217 (2013).
  • Blehar MC , SpongC, GradyC, GoldkindSF, SahinL, ClaytonJA. Enrolling pregnant women: issues in clinical research. Womens Health Issues23(1) , e39–e45 (2013).
  • Anderson GD . Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin. Pharmacokinet.44(10) , 989–1008 (2005).
  • Buckoreelall K , CresseyTR, KingJR. Pharmacokinetic optimization of antiretroviral therapy in pregnancy. Clin. Pharmacokinet.51(10) , 639–659 (2012).
  • Olagunju A , OwenA, CresseyTR. Potential effect of pharmacogenetics on maternal, fetal and infant antiretroviral drug exposure during pregnancy and breastfeeding. Pharmacogenomics13(13) , 1501–1522 (2012).
  • WHO. PMTCT Strategic Vision 2010–2015: Preventing Mother-to-Child Transmission of HIV to Reach the UNGASS and Millennium Development Goals. WHO Press, Geneva, Switzerland (2010).
  • Drocourt L , OurlinJC, PascussiJM, MaurelP, VilaremMJ. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J. Biol. Chem.277(28) , 25125–25132 (2002).
  • Abduljalil K , FurnessP, JohnsonTN, Rostami-HodjeganA, SoltaniH. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin. Pharmacokinet.51(6) , 365–396 (2012).
  • Gaohua L , AbduljalilK, JameiM, JohnsonTN, Rostami-HodjeganA. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br. J. Clin. Pharmacol.74(5) , 873–885 (2012).
  • Ke AB , NallaniSC, ZhaoP, Rostami-HodjeganA, UnadkatJD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst. Pharmacol.1 , e3 (2012).
  • Cressey TR , BestBM, AchalapongJ. Effect of pregnancy on pharmacokinetics of indinavir boosted ritonavir. Presented at: 13th International Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain, 16–18 April 2012.
  • WHO. Antiretroviral Therapy for HIV Infection in Infants and Children: Towards Universal Access. WHO Press, Geneva, Switzerland (2010).
  • Persaud D , GayH, ZiemniakC et al. Functional HIV cure after very early ART of an infected infant. Presented at: 20th Conference on Retroviruses and Opportunistic Infections (CROI). Atlanta, GA, USA, 3–6 March 2013.
  • Luzuriaga K , ChenY, ZiemniakC et al. Absent HIV-specific immune responses and replication-competent HIV reservoirs in perinatally infected youth treated from infancy: towards cure. Presenetd at: 20th Conference on Retroviruses and Opportunistic Infections (CROI). Atlanta, GA, USA, 3–6 March 2013.
  • Johnson TN . The problems in scaling adult drug doses to children. Arch. Dis. Child.93(3) , 207–211 (2008).
  • Fillekes Q , MulengaV, KabambaD et al. Is nevirapine dose escalation appropriate in young, African, HIV-infected children? AIDS doi:10.1097/QAD.0b013e3283620811 (2013) (Epub ahead of print).
  • Fillekes Q , NatukundaE, BalungiJ et al. Pediatric underdosing of efavirenz: a pharmacokinetic study in Uganda. J. Acquir. Immune Defic. Syndr. 58(4) , 392–398 (2011).
  • Zoufaly A , FillekesQ, HammerlR et al. Prevalence and determinants of virological failure in HIV-infected children on antiretroviral therapy in rural Cameroon: a cross-sectional study. Antivir. Ther. doi:10.3851/IMP2562 (2013) (Epub ahead of print).
  • Maharaj AR , BarrettJS, EdgintonAN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J.15(2) , 455–464 (2013).
  • Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann. ICRP32(3–4) , 5–265 (2002).
  • Bjorkman S . Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br. J. Clin. Pharmacol.59(6) , 691–704 (2005).
  • Siccardi M , AlmondL, KhooS, OwenA, BackD. Pharmacokinetics of efavirenz dose optimization in pediatric patients using an in vitro in vivo extrapolation model. Presented at: 19th Conference on Retroviruses and Opportunistic Infections (CROI). Seattle, WA, USA, 5–8 March 2012.
  • Donegan K , DoerholtK, JuddA et al. Lopinavir dosing in HIV-infected children in the United Kingdom and Ireland. Pediatr. Infect. Dis. J. 32(1) , 45–50 (2013).
  • Foxenberg RJ , EllisonCA, KnaakJB, MaC, OlsonJR. Cytochrome P450-specific human PBPK/PD models for the organophosphorus pesticides: chlorpyrifos and parathion. Toxicology285(1–2) , 57–66 (2011).
  • High KP , Brennan-IngM, CliffordDB et al. HIV and aging: state of knowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J. Acquir. Immune Defic. Syndr. 60(Suppl. 1) , S1–S18 (2012).
  • Hontelez JA , de Vlas SJ, Baltussen R et al. The impact of antiretroviral treatment on the age composition of the HIV epidemic in sub-Saharan Africa. AIDS26(Suppl. 1) , S19–S30 (2012).
  • Cusack BJ . Pharmacokinetics in older persons. Am. J. Geriatr. Pharmacother.2(4) , 274–302 (2004).
  • Rhee MS , GreenblattDJ. Pharmacologic consideration for the use of antiretroviral agents in the elderly. J. Clin. Pharmacol.48(10) , 1212–1225 (2008).
  • Klotz U . Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev.41(2) , 67–76 (2009).
  • Schoen JC , ErlandsonKM, AndersonPL. Clinical pharmacokinetics of antiretroviral drugs in older persons. Expert Opin. Drug Metab. Toxicol.9(5) , 573–588 (2013).
  • van Assema DM , LubberinkM, BoellaardR et al. P-glycoprotein function at the blood–brain barrier: effects of age and gender. Mol. Imaging Biol. 14(6) , 771–776 (2012).
  • Bartels AL , KortekaasR, BartJ et al. Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol. Aging 30(11) , 1818–1824 (2009).
  • Shimada T , YamazakiH, MimuraM, InuiY, GuengerichFP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther.270(1) , 414–423 (1994).
  • Parkinson A , MudraDR, JohnsonC, DwyerA, CarrollKM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol. Appl. Pharmacol.199(3) , 193–209 (2004).
  • Crawford KW , SpritzlerJ, KalayjianRC et al. Age-related changes in plasma concentrations of the HIV protease inhibitor lopinavir. AIDS Res. Hum. Retroviruses 26(6) , 635–643 (2010).
  • Winston A , JoseS, GibbonsS et al. Effects of age on antiretroviral plasma drug concentration in HIV-infected subjects undergoing routine therapeutic drug monitoring. J. Antimicrob. Chemother. 68(6) , 1354–1359 (2013).
  • Butler JM , BeggEJ. Free drug metabolic clearance in elderly people. Clin. Pharmacokinet.47(5) , 297–321 (2008).
  • Blizard D , SueyoshiT, NegishiM, DehalSS, KupferD. Mechanism of induction of cytochrome P450 enzymes by the proestrogenic endocrine disruptor pesticide-methoxychlor: interactions of methoxychlor metabolites with the constitutive androstane receptor system. Drug Metab. Dispos.29(6) , 781–785 (2001).
  • Thompson CM , JohnsDO, SonawaneB et al. Database for physiologically based pharmacokinetic (PBPK) modeling: physiological data for healthy and health-impaired elderly. J. Toxicol. Environ. Health B Crit. Rev. 12(1) , 1–24 (2009).
  • Puoti M , MoioliMC, TraviG, RossottiR. The burden of liver disease in human immunodeficiency virus-infected patients. Semin. Liver Dis.32(2) , 103–113 (2012).
  • Ogawa R , StachnikJM, EchizenH. Clinical pharmacokinetics of drugs in patients with heart failure: an update (part 1, drugs administered intravenously). Clin. Pharmacokinet.52(3) , 169–185 (2013).
  • Guengerich FP , TurvyCG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J. Pharmacol. Exp. Ther.256(3) , 1189–1194 (1991).
  • Kojima H , NiesAT, KonigJ et al. Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J. Hepatol. 39(5) , 693–702 (2003).
  • Iwasa M , NakamuraK, NakagawaT et al. Single photon emission computed tomography to determine effective hepatic blood flow and intrahepatic shunting. Hepatology 21(2) , 359–365 (1995).
  • Blaschke TF . Protein binding and kinetics of drugs in liver diseases. Clin. Pharmacokinet.2(1) , 32–44 (1977).
  • Fagundes C , GinesP. Hepatorenal syndrome: a severe, but treatable, cause of kidney failure in cirrhosis. Am. J. Kidney Dis.59(6) , 874–885 (2012).
  • Gines P , SchrierRW. Renal failure in cirrhosis. N. Engl. J. Med.361(13) , 1279–1290 (2009).
  • Barreiro P , Rodriguez-NovoaS, LabargaP et al. Influence of liver fibrosis stage on plasma levels of antiretroviral drugs in HIV-infected patients with chronic hepatitis C. J. Infect. Dis. 195(7) , 973–979 (2007).
  • Verbeeck RK . Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur. J. Clin. Pharmacol.64(12) , 1147–1161 (2008).
  • Li GF , WangK, ChenR, ZhaoHR, YangJ, ZhengQS. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol. Sin.33(11) , 1359–1371 (2012).
  • Zhao P , VieiraMDT, GrilloJA et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J. Clin. Pharmacol. 52(1 Suppl.) , 91S–108S (2012).
  • Edginton AN , WillmannS. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin. Pharmacokinet.47(11) , 743–752 (2008).
  • Crum-Cianflone N , RoedigerMP, EberlyL et al. Increasing rates of obesity among HIV-infected persons during the HIV epidemic. PloS ONE 5(4) , e10106 (2010).
  • Mandina Ndona M , Longo-MbenzaB, WumbaR et al. Nadir CD4+, religion, antiretroviral therapy, incidence of Type 2 diabetes mellitus, and increasing rates of obesity among black Africans with HIV disease. Int. J. Gen. Med. 5 , 983–990 (2012).
  • Hanley MJ , AbernethyDR, GreenblattDJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet.49(2) , 71–87 (2010).
  • Morrish GA , PaiMP, GreenB. The effects of obesity on drug pharmacokinetics in humans. Expert Opin. Drug Metab. Toxicol.7(6) , 697–706 (2011).
  • de Roche M , SiccardiM, StoeckleM et al. Efavirenz in an obese HIV-infected patient – a report and an in vitro–in vivo extrapolation model indicate risk of underdosing. Antivir. Ther. 17(7) , 1381–1384 (2012).
  • Tseng A , Hills-NieminenC. Drug interactions between antiretrovirals and hormonal contraceptives. Expert Opin. Drug Metab. Toxicol.9(5) , 559–572 (2013).
  • Byakika-Kibwika P , LamordeM, MayitoJ et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J. Antimicrob. Chemother. 67(9) , 2213–2221 (2012).
  • Byakika-Kibwika P , LamordeM, Okaba-KayomV et al. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J. Antimicrob. Chemother. 67(5) , 1217–1223 (2012).
  • Soyinka JO , OnyejiCO. Alteration of pharmacokinetics of proguanil in healthy volunteers following concurrent administration of efavirenz. Eur. J. Pharm. Sci.39(4) , 213–218 (2010).
  • Soyinka JO , OnyejiCO, OmoruyiSI, OwolabiAR, SarmaPV, CookJM. Effects of concurrent administration of nevirapine on the disposition of quinine in healthy volunteers. J. Pharm. Pharmacol.61(4) , 439–443 (2009).
  • Soyinka JO , OnyejiCO, OmoruyiSI, OwolabiAR, SarmaPV, CookJM. Pharmacokinetic interactions between ritonavir and quinine in healthy volunteers following concurrent administration. Br. J. Clin. Pharmacol.69(3) , 262–270 (2010).
  • Carten ML , KiserJJ, KwaraA, MawhinneyS, Cu-UvinS. Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and efavirenz. Infect. Dis. Obstet. Gynecol.2012 , 137192 (2012).
  • Chu X , CaiX, CuiD et al. In vitro assessment of drug–drug interaction potential of boceprevir associated with drug metabolizing enzymes and transporters. Drug Metab. Dispos.41(3) , 668–681 (2013).
  • Hulskotte EG , FengHP, XuanF et al. Pharmacokinetic interactions between the hepatitis C virus protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, darunavir, and lopinavir. Clin. Infect. Dis. 56(5) , 718–726 (2013).
  • van Heeswijk RP , BeumontM, KauffmanRS, GargV. Review of drug interactions with telaprevir and antiretrovirals. Antivir. Ther. doi:10.3851/IMP2527 (2013) (Epub ahead of print).
  • Vourvahis M , PlotkaA, KantaridisC. The effect of boceprevir and telaprevir on the pharmacokinetics of maraviroc: an open-label, fixed-sequence study in healthy volunteers. Presented at: 14th International Workshop on Clinical Pharmacology of HIV Therapy. Amsterdam, The Netherlands, 22–24 April 2013.
  • Nwebaza N , KajubiR, SsebulibaJ et al. Selection of ARV regimen impacts antimalarial pharmacokinetics and treatment outcomes in HIV/malaria co-infected children in Uganda. Presented at: 20th Conference on Retroviruses and Opportunistic Infections (CROI). Atlanta, GA, USA, 3–6 March 2013.
  • Siccardi M , OlagunjuA, SedenK et al. Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug–drug interaction with efavirenz. In Silico Pharmacol. 1 , 4 (2013).
  • Siccardi M , MarzoliniC, SedenK et al. Prediction of drug–drug interactions between various antidepressants and efavirenz or boosted protease inhibitors using a physiologically based pharmacokinetic modelling approach. Clin. Pharmacokinet. 52(7) , 583–592 (2013).
  • Nachega JB , HsuAJ, UthmanOA, SpinewineA, PhamPA. Antiretroviral therapy adherence and drug–drug interactions in the aging HIV population. AIDS26(Suppl. 1) , S39–S53 (2012).
  • Orlando G , MeravigliaP, CordierL et al. Antiretroviral treatment and age-related comorbidities in a cohort of older HIV-infected patients. HIV Med. 7(8) , 549–557 (2006).
  • Negin J , MartiniukA, CummingRG et al. Prevalence of HIV and chronic comorbidities among older adults. AIDS 26(Suppl. 1) , S55–S63 (2012).
  • Grillo JA , ZhaoP, BullockJ et al. Utility of a physiologically-based pharmacokinetic (PBPK) modeling approach to quantitatively predict a complex drug–drug–disease interaction scenario for rivaroxaban during the drug review process: implications for clinical practice. Biopharm. Drug Dispos. 33(2) , 99–110 (2012).
  • van den Bout-van den Beukel CJ , KoopmansPP, van der Ven AJ, De Smet PA, Burger DM. Possible drug-metabolism interactions of medicinal herbs with antiretroviral agents. Drug Metab. Rev.38(3) , 477–514 (2006).
  • Kola I , LandisJ. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov.3(8) , 711–715 (2004).
  • Lennernas H , AbrahamssonB. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J. Pharm. Pharmacol.57(3) , 273–285 (2005).
  • van Klooster G , HoebenE, BorghysH et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob. Agents Chemother. 54(5) , 2042–2050 (2010).
  • Kashuba AD . Drug–drug interactions and the pharmacotherapy of HIV infection. Top. HIV Med.13(2) , 64–69 (2005).
  • Fang AF , DamleBD, LaBadieRR, CrownoverPH, HewlettD Jr, Glue PW. Significant decrease in nelfinavir systemic exposure after omeprazole coadministration in healthy subjects. Pharmacotherapy28(1) , 42–50 (2008).
  • Iwamoto M , WenningLA, NguyenBY et al. Effects of omeprazole on plasma levels of raltegravir. Clin. Infect. Dis. 48(4) , 489–492 (2009).
  • Jamei M , TurnerD, YangJ et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 11(2) , 225–237 (2009).
  • Darwich AS , NeuhoffS, JameiM, Rostami-HodjeganA. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the ‘advanced dissolution, absorption, metabolism (ADAM)‘ model. Curr. Drug Metab.11(9) , 716–729 (2010).
  • Allan G , DavisJ, DickinsM et al. Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man. Xenobiotica 38(6) , 620–640 (2008).
  • Lake-Bakaar G , TomW, Lake-BakaarD et al. Gastropathy and ketoconazole malabsorption in the acquired immunodeficiency syndrome (AIDS). Ann. Intern. Med. 109(6) , 471–473 (1988).
  • Moss DM , SiccardiM, BackDJ, OwenA. Predicting intestinal absorption of raltegravir using a population-based ADME simulation. J. Antimicrob. Chemother.68(7) , 1627–1634 (2013).
  • Moss DM , SiccardiM, MurphyM et al. Divalent metals and pH alter raltegravir disposition in vitro. Antimicrob. Agents Chemother. 56(6) , 3020–3026 (2012).
  • Kiser JJ , BumpassJB, MeditzAL et al. Effect of antacids on the pharmacokinetics of raltegravir in human immunodeficiency virus-seronegative volunteers. Antimicrob. Agents Chemother. 54(12) , 4999–5003 (2010).
  • Darwich AS , PadeD, AmmoriBJ, JameiM, AshcroftDM, Rostami-HodjeganA. A mechanistic pharmacokinetic model to assess modified oral drug bioavailability post bariatric surgery in morbidly obese patients: interplay between CYP3A gut wall metabolism, permeability and dissolution. J. Pharm. Pharmacol.64(7) , 1008–1024 (2012).
  • Prueksaritanont T , MaB, YuN. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Br. J. Clin. Pharmacol.56(1) , 120–124 (2003).
  • Thorn M , FinnstromN, LundgrenS, RaneA, LoofL. Cytochromes P450 and MDR1 mRNA expression along the human gastrointestinal tract. Br. J. Clin. Pharmacol.60(1) , 54–60 (2005).
  • Schiller C , FrohlichCP, GiessmannT et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 22(10) , 971–979 (2005).
  • Sousa T , PatersonR, MooreV, CarlssonA, AbrahamssonB, BasitAW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm.363(1–2) , 1–25 (2008).
  • Shelton MJ , AkbariB, HewittRG, AdamsJM, MorseGD. Eradication of Helicobacter pylori is associated with increased exposure to delavirdine in hypochlorhydric HIV-positive patients. J. Acquir. Immune Defic. Syndr.24(1) , 79–82 (2000).
  • Chave JP , ThorensJ, FrohlichF et al. Gastric and duodenal bacterial colonization in HIV-infected patients without gastrointestinal symptoms. Am. J. Gastroenterol. 89(12) , 2168–2171 (1994).
  • Linskens RK , HuijsdensXW, SavelkoulPH, Vandenbroucke-GraulsCM, MeuwissenSG. The bacterial flora in inflammatory bowel disease: current insights in pathogenesis and the influence of antibiotics and probiotics. Scand. J. Gastroenterol. Suppl. (234) , 29–40 (2001).
  • Ley RE , TurnbaughPJ, KleinS, GordonJI. Microbial ecology: human gut microbes associated with obesity. Nature444(7122) , 1022–1023 (2006).
  • Cory TJ , SchackerTW, StevensonM, FletcherCV. Overcoming pharmacologic sanctuaries. Curr. Opin. HIV AIDS8(3) , 190–195 (2013).
  • Marzolini C , GrayGE. Maternal antiretroviral prophylaxis and breastfeeding. Antivir. Ther.17(8) , 1503–1506 (2012).
  • Clewell RA , GearhartJM. Pharmacokinetics of toxic chemicals in breast milk: use of PBPK models to predict infant exposure. Environ. Health Perspect.110(6) , A333–A337 (2002).
  • Janneh O , HartkoornR, JonesE et al. Cultured CD4T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. Br. J. Pharmacol. 155(6) , 875–883 (2008).
  • Smith NF , FiggWD, SparreboomA. Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin. Drug Metab. Toxicol.1(3) , 429–445 (2005).
  • Obaidat A , RothM, HagenbuchB. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu. Rev. Pharmacol. Toxicol.52 , 135–151 (2012).
  • Nishimura M , YagutiH, YoshitsuguH, NaitoS, SatohT. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi123(5) , 369–375 (2003).
  • Nakamura A , NakajimaM, YamanakaH, FujiwaraR, YokoiT. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab. Dispos.36(8) , 1461–1464 (2008).
  • Liu X , TuM, KellyRS, ChenC, SmithBJ. Development of a computational approach to predict blood–brain barrier permeability. Drug Metab. Dispos.32(1) , 132–139 (2004).
  • Ene L , DuiculescuD, RutaS. How much do antiretroviral drugs penetrate into the central nervous system? J. Med. Life4(4) , 432 (2011).
  • Letendre S , Marquie-BeckJ, CapparelliE et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch. Neurol. 65(1) , 65–70 (2008).
  • Marra CM , ZhaoY, CliffordDB et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 23(11) , 1359–1366 (2009).
  • Tozzi V , BalestraP, SalvatoriMF et al. Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J. Acquir. Immune Defic. Syndr. 52(1) , 56–63 (2009).
  • Letendre S . Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top. Antivir. Med.19(4) , 137–142 (2011).
  • Thomas S . Anti-HIV drug distribution to the central nervous system. Curr. Pharm. Des.10(12) , 1313–1324 (2004).
  • Westerhout J , PloegerB, SmeetsJ, DanhofM, de Lange EC. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J.14(3) , 543–553 (2012).
  • Curley P , MartinP, LiptrottN, BackD, OwenA, SiccardiM. Utilising in vitro–in vivo extrapolation to investigate efavirenz penetration into the central nervous system. Presented at: 14th International Workshop on Clinical Pharmacology of HIV Therapy. Amsterdam, The Netherlands, 22–24 April 2013.
  • Owen A , PirmohamedM, KhooSH, BackDJ. Pharmacogenetics of HIV therapy. Pharmacogenet. Genomics16(10) , 693–703 (2006).
  • Desta Z , SausseleT, WardB et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics 8(6) , 547–558 (2007).
  • Siccardi M , D‘AvolioA, NozzaS et al. Maraviroc is a substrate for OATP1B1in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenet. Genomics 20(12) , 759–765 (2010).
  • Thompson MA , AbergJA, CahnP et al. Antiretroviral treatment of adult HIV infection. JAMA 304(3) , 321–333 (2010).
  • Mahungu T , JohnsonM, OwenA, BackD. The impact of pharmacogenetics on HIV therapy. Int. J. STD AIDS20(3) , 145–151 (2009).
  • Bazzoli C , JullienV, Le Tiec C, Rey E, Mentre F, Taburet AM. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet.49(1) , 17–45 (2010).
  • von Kleist M , HuisingaW. Pharmacokinetic–pharmacodynamic relationship of NRTIs and its connection to viral escape: an example based on zidovudine. Eur. J. Pharm. Sci.36(4) , 532–543 (2009).
  • Hurwitz SJ , AsifG, SchinaziRF. Development of a population simulation model for HIV monotherapy virological outcomes using lamivudine. Antivir. Chem. Chemother.18(6) , 329–342 (2007).
  • Zhang W , YuBN, He Y-J et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta373(1) , 99–103 (2006).
  • Clumeck N , PozniakA, RaffiF. European AIDS Clinical Society (EACS) guidelines for the clinical management and treatment of HIV infected adults. HIV Med.9(2) , 65–71 (2008).
  • Schipani A , WyenC, MahunguT et al. Integration of population pharmacokinetics and pharmacogenetics: an aid to optimal nevirapine dose selection in HIV-infected individuals. J. Antimicrob. Chemother. 66(6) , 1332–1339 (2011).
  • Elens L , VandercamB, YombiJ, LisonD, WallemacqP, HaufroidV. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics11(9) , 1223–1234 (2010).
  • Rotger M , ColomboS, FurrerH et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet. Genomics 15(1) , 1–5 (2005).
  • Ogburn ET , JonesDR, MastersAR, XuC, GuoYY, DestaZ. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 (CYP) 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab. Dispos.38(7) , 1218–1229 (2010).
  • Bae S , JeongYJ, LeeC, LiuKH. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica41(6) , 437–444 (2011).
  • Ward BA , GorskiJC, JonesDR, HallSD, FlockhartDA, DestaZ. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther.306(1) , 287–300 (2003).
  • Haas D , RibaudoH, KimR et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18(18) , 2391–2400 (2004).
  • Rakhmanina N , van den Anker J. Efavirenz in the therapy of HIV infection. Expert Opin. Drug Metab. Toxicol.6(1) , 95–103 (2010).
  • Siccardi M , AlmondL, SchipaniA et al. Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro–in vivo extrapolation model. Clin. Pharmacol. Ther. 92(4) , 494–502 (2012).
  • Erickson DA , MatherG, TragerWF, LevyRH, KeirnsJJ. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab. Dispos.27(12) , 1488–1495 (1999).
  • Calcagno A , D‘AvolioA, SimieleM et al. Influence of CYP2B6 and ABCB1 SNPs on nevirapine plasma concentrations in Burundese HIV-positive patients using dried sample spot devices. Br. J. Clin. Pharmacol. 74(1) , 134–140 (2012).
  • Croxtall JD . Etravirine: a review of its use in the management of treatment-experienced patients with HIV-1 infection. Drugs72(6) , 847–869 (2012).
  • Schöller-Gyüre M , KakudaTN, De Smedt G et al. A pharmacokinetic study of etravirine (TMC125) co-administered with ranitidine and omeprazole in HIV-negative volunteers. Br. J. Clin. Pharmacol.66(4) , 508–516 (2008).
  • Siccardi M , OlagunjuA, CurleyP et al. Prediction of etravirine pharmacogenetics using a physiologically based pharmacokinetic approach. Presented at: 20th Conference on Retroviruses and Opportunistic Infections (CROI). Atlanta, GA, USA, 3–6 March 2013.
  • Lubomirov R , Arab-AlameddineM, RotgerM et al.Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individuals. Pharmacogenet. Genomics23(1) , 9–18 (2013).
  • Fröhlich M , HoffmannMM, BurhenneJ, MikusG, WeissJ, HaefeliWE. Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br. J. Clin. Pharmacol.58(4) , 443–444 (2004).
  • Ke A , NallaniS, ZhaoP, Rostami-HodjeganA, UnadkatJ. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst. Pharmacol.1(9) , e3 (2012).
  • Zhao P , RowlandM, HuangSM. Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clin. Pharmacol. Ther.92(1) , 17–20 (2012).
  • Anderson PL , LambaJ, AquilanteCL, SchuetzE, FletcherCV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J. Acquir. Immune Defic. Syndr.42(4) , 441–449 (2006).
  • Gradhand U , LangT, SchaeffelerE et al. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J. 8(1) , 42–52 (2007).
  • Rodriguez-Novoa S , LabargaP, SorianoV. Pharmacogenetics of tenofovir treatment. Pharmacogenomics10(10) , 1675–1685 (2009).
  • Pushpakom SP , LiptrottNJ, Rodriguez-NovoaS et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J. Infect. Dis. 204(1) , 145–153 (2011).
  • Mahungu T , SmithC, TurnerF et al. Cytochrome P450 2B6 516G-->T is associated with plasma concentrations of nevirapine at both 200 mg twice daily and 400 mg once daily in an ethnically diverse population. HIV Med. 10(5) , 310–317 (2009).
  • Wyen C , HendraH, VogelM et al. Impact of CYP2B6 983T> C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J. Antimicrob. Chemother. 61(4) , 914–918 (2008).
  • Wang J , SönnerborgA, RaneA et al. Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet. Genomics 16(3) , 191–198 (2006).
  • Liptrott NJ , PushpakomS, WyenC et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenet. Genom. 22(1) , 10–19 (2012).
  • Kwara A , LarteyM, SagoeKW, KenuE, CourtMH. CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients. AIDS23(16) , 2101–2106 (2009).
  • Cortes CP , SiccardiM, ChaikanA, OwenA, ZhangG, PorteCJ. Correlates of efavirenz exposure in Chilean patients affected with human immunodeficiency virus reveals a novel association with a polymorphism in the constitutive androstane receptor. Ther. Drug Monit.35(1) , 78–83 (2012).
  • Wyen C , HendraH, SiccardiM et al. Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J. Antimicrob. Chemother. 66(9) , 2092–2098 (2011).
  • Haufroid V , MouradM, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenet. Genomics14(3) , 147–154 (2004).
  • Josephson F , AllqvistA, JanabiM et al. CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin. Pharmacol. Ther.81(5) , 708–712 (2007).
  • Schipani A , SiccardiM, D‘AvolioA et al. Population pharmacokinetic modeling of the association between 63396C->T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob. Agents Chemother. 54(12) , 5242–5250 (2010).
  • Siccardi M , D‘AvolioA, BaiettoL et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C ->T) with reduced concentrations of unboosted atazanavir. Infect. Cont. Hosp. Ep. 29 , 1222–1225 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.