1,102
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of Hepatocellular Carcinoma

, &
Pages 433-446 | Published online: 11 Dec 2014

References

  • Dunn GP , BruceAT, IkedaH, OldLJ, SchreiberRD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3(11), 991–998 (2002).
  • Buonaguro L , PetrizzoA, TorneselloML, BuonaguroFM. Translating tumor antigens into cancer vaccines. Clin. Vaccine Immunol.18(1), 23–34 (2011).
  • Yoong KF , AffordSC, JonesRet al. Expression and function of CXC and CC chemokines in human malignant liver tumors: a role for human monokine induced by gamma-interferon in lymphocyte recruitment to hepatocellular carcinoma. Hepatology30(1), 100–111 (1999).
  • Wada Y , NakashimaO, KutamiR, YamamotoO, KojiroM. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology27(2), 407–414 (1998).
  • Friedl J , StiftA, PaoliniPet al. Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer. Cancer Biother. Radiopharm.15(5), 477–486 (2000).
  • Feijoó E , AlfaroC, MazzoliniGet al. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int. J. Cancer116(2), 275–281 (2005).
  • Strand S , HofmannWJ, HugHet al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells – a mechanism of immune evasion? Nat. Med. 2(12), 1361–1366 (1996).
  • Shiraki K , YamanakaT, InoueHet al. Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int. J. Oncol.26(5), 1273–1281 (2005).
  • Wang B-J , BaoJ-J, WangJ-Zet al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J. Gastroenterol.17(28), 3322–3329 (2011).
  • Gao Q , WangX-Y, QiuS-Jet al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res.15(3), 971–979 (2009).
  • Zhou J , DingT, PanW, ZhuL-Y, LiL, ZhengL. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer125(7), 1640–1648 (2009).
  • Pedroza-Gonzalez A , VerhoefC, IjzermansJNMet al. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology57(1), 183–194 (2013).
  • Zhao W , ZhangL, XuYet al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab. Invest.94(2), 182–191 (2014).
  • Cariani E , PilliM, ZerbiniAet al. Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS ONE7(3), e32493 (2012).
  • Chen Y-X , ManK, LingGSet al. A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J. Immunol.179(9), 6009–6015 (2007).
  • Liu Y , DaleyS, EvdokimovaVN, ZdobinskiDD, PotterDM, ButterfieldLH. Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J. Immunol.177(1), 712–721 (2006).
  • Han Y , ChenZ, YangYet al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology59(2), 567–579 (2014).
  • Cerundolo V , HermansIF, SalioM. Dendritic cells: a journey from laboratory to clinic. Nat. Immunol.5(1), 7–10 (2004).
  • Nestle FO , AlijagicS, GillietMet al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4(3), 328–332 (1998).
  • Small EJ , FratesiP, ReeseDMet al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol.18(23), 3894–3903 (2000).
  • Höltl L , RieserC, PapeshCet al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J. Urol.161(3), 777–782 (1999).
  • Butterfield LH , RibasA, DissetteVBet al. A Phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin. Cancer Res.12(9), 2817–2825 (2006).
  • Lee W-C , WangH-C, HungC-F, HuangP-F, LiaC-R, ChenM-F. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J. Immunother.28(5), 496–504 (2005).
  • Nakamoto Y , MizukoshiE, TsujiHet al. Combined therapy of transcatheter hepatic arterial embolization with intratumoral dendritic cell infusion for hepatocellular carcinoma: clinical safety. Clin. Exp. Immunol.147(2), 296–305 (2007).
  • Kantoff PW , HiganoCS, ShoreNDet al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363(5), 411–422 (2010).
  • Palmer DH , MidgleyRS, MirzaNet al. A Phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology49(1), 124–132 (2008).
  • Ansary El M , MogawerS, ElhamidSAet al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J. Cancer Res. Clin. Oncol.139(1), 39–48 (2013).
  • Bray SM , VujanovicL, ButterfieldLH. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin. Dev. Immunol.2011, 249281 (2011).
  • Dhodapkar MV , SteinmanRM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood100(1), 174–177 (2002).
  • Luo G , HuangS, XieXet al. Expression of cancer-testis genes in human hepatocellular carcinomas. Cancer Immun.2, 11 (2002).
  • Evdokimova VN , LiuY, PotterDM, ButterfieldLH. AFP-specific CD4+ helper T-cell responses in healthy donors and HCC patients. J. Immunother.30(4), 425–437 (2007).
  • Hanke P , RabeC, SerweMet al. Cirrhotic patients with or without hepatocellular carcinoma harbour AFP-specific T-lymphocytes that can be activated in vitro by human alpha-fetoprotein. Scand. J. Gastroenterol.37(8), 949–955 (2002).
  • Butterfield LH , RibasA, MengWSet al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin. Cancer Res.9(16 Pt 1), 5902–5908 (2003).
  • Iwashita Y , TaharaK, GotoSet al. A Phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol. Immunother.52(3), 155–161 (2003).
  • Schumacher L , RibasA, DissetteVBet al. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J. Immunother.27(3), 191–200 (2004).
  • Flecken T , SchmidtN, HildSet al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology59(4), 1415–1426 (2014).
  • Zhang L , ZhangH, LiuWet al. Specific antihepatocellular carcinoma T cells generated by dendritic cells pulsed with hepatocellular carcinoma cell line HepG2 total RNA. Cell. Immunol.238(1), 61–66 (2005).
  • Chi K-H , LiuS-J, LiC-Pet al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J. Immunother.28(2), 129–135 (2005).
  • Gonzalez-Carmona MA , Lukacs-KornekV, TimmermanAet al. CD40ligand-expressing dendritic cells induce regression of hepatocellular carcinoma by activating innate and acquired immunity in vivo. Hepatology48(1), 157–168 (2008).
  • Elmetwali T , YoungLS, PalmerDH. CD40 ligand-induced carcinoma cell death: a balance between activation of TNFR-associated factor (TRAF) 3-dependent death signals and suppression of TRAF6-dependent survival signals. J. Immunol.184(2), 1111–1120 (2010).
  • Hill SC , YoudeSJ, ManSet al. Activation of CD40 in cervical carcinoma cells facilitates CTL responses and augments chemotherapy-induced apoptosis. J. Immunol.174(1), 41–50 (2005).
  • Gonzalez-Carmona MA , MärtenA, HoffmannPet al. Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int.26(3), 369–379 (2006).
  • Qiu Y , XuM-B, YunMMet al. Hepatocellular carcinoma-specific immunotherapy with synthesized α1,3- galactosyl epitope-pulsed dendritic cells and cytokine-induced killer cells. World J. Gastroenterol.17(48), 5260–5266 (2011).
  • Ohira M , NishidaS, TryphonopoulosPet al. Clinical-scale isolation of interleukin-2-stimulated liver natural killer cells for treatment of liver transplantation with hepatocellular carcinoma. Cell Transplant.21(7), 1397–1406 (2012).
  • Chew V , TowC, HuangCet al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J. Natl Cancer Inst.104(23), 1796–1807 (2012).
  • Koh S , ShimasakiN, SuwanaruskRet al. A practical approach to immunotherapy of hepatocellular carcinoma using T cells redirected against hepatitis B virus. Mol. Ther. Nucleic Acids2, e114 (2013).
  • Hernández-Alcoceba R , SangroB, BerraondoP, Gonzalez-AseguinolazaG, PrietoJ. Cytokines for the treatment of gastrointestinal cancers: clinical experience and new perspectives. Expert Opin. Investig. Drugs22(7), 827–841 (2013).
  • Chen L-T , ChenM-F, LiL-Aet al. Long-term results of a randomized, observation-controlled, Phase III trial of adjuvant interferon alfa-2b in hepatocellular carcinoma after curative resection. Ann. Surg.255(1), 8–17 (2012).
  • Llovet JM , SalaM, CastellsLet al. Randomized controlled trial of interferon treatment for advanced hepatocellular carcinoma. Hepatology31(1), 54–58 (2000).
  • Lai CL , LauJY, WuPCet al. Recombinant interferon-alpha in inoperable hepatocellular carcinoma: a randomized controlled trial. Hepatology17(3), 389–394 (1993).
  • Yeo W , MokTS, ZeeBet al. A randomized Phase III study of doxorubicin versus cisplatin/interferon-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl Cancer Inst.97(20), 1532–1538 (2005).
  • Reid T , GalanisE, AbbruzzeseJet al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): Phase II viral, immunologic, and clinical endpoints. Cancer Res.62(21), 6070–6079 (2002).
  • Kirn DH , ThorneSH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer9(1), 64–71 (2009).
  • Kim YI , ChungJW, ParkJH, HanJK, HongJW, ChungH. Intraarterial gene delivery in rabbit hepatic tumors: transfection with nonviral vector by using iodized oil emulsion. Radiology240(3), 771–777 (2006).
  • Park B-H , HwangT, LiuT-Cet al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a Phase I trial. Lancet Oncol.9(6), 533–542 (2008).
  • Liu T-C , HwangT, ParkB-H, BellJ, KirnDH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol. Ther.16(9), 1637–1642 (2008).
  • A Phase 2b study of modified vaccinia virus to treat patients advanced liver cancer who failed sorafenib (TRAVERSE). http://clinicaltrials.gov/show/NCT01387555.
  • Van den Eynde BJ , van der BruggenP. T cell defined tumor antigens. Curr. Opin. Immunol.9(5), 684–693 (1997).
  • Thimme R , NeaguM, BoettlerTet al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology48(6), 1821–1833 (2008).
  • Xu Y , LiH, GaoRL, AdeyemoO, ItkinM, KaplanDE. Expansion of interferon-gamma-producing multifunctional CD4+ T-cells and dysfunctional CD8+ T-cells by glypican-3 peptide library in hepatocellular carcinoma patients. Clin. Immunol.139(3), 302–313 (2011).
  • Zerbini A , PilliM, SolianiPet al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+cells in patients with hepatocellular carcinoma. J. Hepatol.40(1), 102–109 (2004).
  • Capurro M , WanlessIR, ShermanMet al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology125(1), 89–97 (2003).
  • International Consensus Group for Hepatocellular Neoplasia . Pathologic diagnosis of early hepatocellular carcinoma: A report of the international consensus group for hepatocellular neoplasia. Hepatology49(2), 658–664 (2008).
  • Komori H , NakatsuraT, SenjuSet al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin. Cancer Res.12(9), 2689–2697 (2006).
  • Nakano K , OritaT, NezuJet al. Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun.378(2), 279–284 (2009).
  • Sawada Y , YoshikawaT, NobuokaDet al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin. Cancer Res.18(13), 3686–3696 (2012).
  • Walter S , WeinschenkT, StenzlAet al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med.18(8), 1254–1261 (2012).
  • HEPAVAC. Cancer vaccine development for hepatocellular carcinoma. www.hepavac.eu.
  • Melero I , Hervás-StubbsS, GlennieM, PardollDM, ChenL. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer7(2), 95–106 (2007).
  • Chambers CA , KuhnsMS, EgenJG, AllisonJP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol.19, 565–594 (2001).
  • Marengère LE , WaterhouseP, DuncanGS, MittrückerHW, FengGS, MakTW. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science272(5265), 1170–1173 (1996).
  • Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer.12(4), 252–264 (2012).
  • Walker LSK , SansomDM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol.11(12), 852–863 (2011).
  • Quezada SA , PeggsKS, SimpsonTR, ShenY, LittmanDR, AllisonJP. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med.205(9), 2125–2138 (2008).
  • Camacho LH , AntoniaS, SosmanJet al. Phase I/II trial of Tremelimumab in patients with metastatic melanoma. J. Clin. Oncol.27(7), 1075–1081 (2009).
  • Chung KY , GoreI, FongLet al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol.28(21), 3485–3490 (2010).
  • Hodi FS , O'DaySJ, McDermottDFet al. Improved survival with Ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Sangro B , Gomez-MartinC, la Mata deMet al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol.59(1), 81–88 (2013).
  • Okazaki T , HonjoT. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol.19(7), 813–824 (2007).
  • Hamid O , RobertC, DaudAet al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med.369(2), 134–144 (2013).
  • Topalian SL , HodiFS, BrahmerJRet al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366(26), 2443–2454 (2012).
  • Dose escalation study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with advanced hepatocellular carcinoma (HCC) with or without chronic viral hepatitis (anti-PD-1 HCC). http://clinicaltrials.gov/show/NCT01658878.
  • Zhu AX , GoldPJ, El-KhoueiryABet al. First-in-man Phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin. Cancer Res.19(4), 920–928 (2013).
  • A study of RO5137382 (GC33) in patients with advanced or metastatic hepatocellular carcinoma. http://clinicaltrials.gov/show/NCT01507168.
  • Study of GC33 and sorafenib in combination in advanced or metastatic liver cancer (hepatocellular carcinoma). http://clinicaltrials.gov/show/NCT00976170.
  • Feng M , GaoW, WangRet al. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA110(12), E1083–E1091 (2013).
  • Castle JC , KreiterS, DiekmannJet al. Exploiting the mutanome for tumor vaccination. Cancer Res.72(5), 1081–1091 (2012).
  • Quakkelaar ED , MeliefCJM. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. Adv. Immunol.114, 77–106 (2012).
  • Rammensee H-G , Singh-JasujaH. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev. Vaccines12(10), 1211–1217 (2013).
  • Mount A , KoernigS, SilvaA, DraneD, MaraskovskyE, MorelliAB. Combination of adjuvants: the future of vaccine design. Expert Rev. Vaccines12(7), 733–746 (2013).
  • Bracci L , CaponeI, MoschellaF, ProiettiE, BelardelliF. Exploiting dendritic cells in the development of cancer vaccines. Expert Rev. Vaccines12(10), 1195–1210 (2013).
  • Baxevanis CN , VoutsasIF, TsitsilonisOE. Toll-like receptor agonists: current status and future perspective on their utility as adjuvants in improving anticancer vaccination strategies. Immunotherapy5(5), 497–511 (2013).
  • Schlom J . Therapeutic cancer vaccines: current status and moving forward. J. Natl Cancer Inst.104(8), 599–613 (2012).
  • Diken M , KreiterS, SelmiA, TüreciO, SahinU. Antitumor vaccination with synthetic mRNA: strategies for in vitro and in vivo preclinical studies. Methods Mol. Biol.969, 235–246 (2013).
  • Sandoval F , TermeM, NizardMet al. Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. Sci. Transl. Med.5(172), 172ra20 (2013).
  • Vonderheide RH , GlennieMJ. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res.19(5), 1035–1043 (2013).
  • Melero I , Hirschhorn-CymermanD, Morales-KastresanaA, SanmamedMF, WolchokJD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin. Cancer Res.19(5), 1044–1053 (2013).
  • Dose escalation study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with advanced hepatocellular carcinoma (HCC) with or without chronic viral hepatitis (anti-PD-1 HCC). http://clinicaltrials.gov/show/NCT01658878.
  • Anderson AC . Tim-3, a negative regulator of anti-tumor immunity. Curr. Opin. Immunol.24(2), 213–216 (2012).
  • Sakuishi K , ApetohL, SullivanJM, BlazarBR, KuchrooVK, AndersonAC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207(10), 2187–2194 (2010).
  • Grosso JF , KelleherCC, HarrisTJet al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest.117(11), 3383–3392 (2007).
  • Woo S-R , TurnisME, GoldbergMVet al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res.72(4), 917–927 (2012).
  • Weinberg AD , MorrisNP, Kovacsovics-BankowskiM, UrbaWJ, CurtiBD. Science gone translational: the OX40 agonist story. Immunol. Rev.244(1), 218–231 (2011).
  • Curti BD , Kovacsovics-BankowskiM, MorrisNet al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res.73(24), 7189–7198 (2013).
  • Brok den MHMGM , NierkensS, FigdorCG, RuersTJM, AdemaGJ. Dendritic cells: tools and targets for antitumor vaccination. Expert Rev. Vaccines4(5), 699–710 (2005).
  • Brok den MHMGM , SutmullerRPM, NierkensSet al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br. J. Cancer95(7), 896–905 (2006).
  • Sellge G , LorentzA, GebhardtTet al. Human intestinal fibroblasts prevent apoptosis in human intestinal mast cells by a mechanism independent of stem cell factor, IL-3, IL-4, and nerve growth factor. J. Immunol.172(1), 260–267 (2004).
  • Wissniowski TT , HänslerJ, NeureiterDet al. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res.63(19), 6496–6500 (2003).
  • Geissler M , MohrL, WethRet al. Immunotherapy directed against alpha-fetoprotein results in autoimmune liver disease during liver regeneration in mice. Gastroenterology121(4), 931–939 (2001).
  • Hanke P , SerweM, DombrowskiF, SauerbruchT, CaselmannWH. DNA vaccination with AFP-encoding plasmid DNA prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Ther.9(4), 346–355 (2002).
  • Melero I , GrimaldiAM, Perez-GraciaJL, AsciertoPA. Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin. Cancer Res.19(5), 997–1008 (2013).
  • Wolchok JD , KlugerH, CallahanMKet al. Nivolumab plus Ipilimumab in advanced melanoma. N. Engl. J. Med.369(2), 122–133 (2013).
  • Morales-Kastresana A , SanmamedMF, RodriguezIet al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin. Cancer Res.19(22), 6151–6162 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.