347
Views
0
CrossRef citations to date
0
Altmetric
Review

Non-Coding RNA and Immune-Checkpoint Inhibitors: Friends or Foes?

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 513-529 | Received 13 Nov 2019, Accepted 14 Apr 2020, Published online: 07 May 2020

References

  • Palazzo AF , LeeES. noncoding RNA: what is functional and what is junk?Front. Genet.6, 2 (2015).
  • Holley RW , ApgarJ , EverettGAet al. Structure of a Ribonucleic Acid. Science147(3664), 1462–1465 (1965).
  • Fire A , XuS , MontgomeryMK , KostasSA , DriverSE , MelloCC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391(6669), 806–811 (1998).
  • Wang WT , HanC , SunYM , ChenTQ , ChenYQ. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol.12(1), 55 (2019).
  • Idda ML , MunkR , AbdelmohsenK , GorospeM. Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip. Rev. RNA9(2), 1–13 (2018).
  • Mueller AK , LindnerK , HummelR , HaierJ , WatsonDI , HusseyDJ. MicroRNAs and their impact on radiotherapy for cancer. Radiat. Res.185(6), 668–677 (2016).
  • Pajic M , FroioD , DalySet al. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Res.78(2), 501–515 (2018).
  • Tang XY , ZhengW , DingMet al. miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism. Drug Des. Devel. Ther.10, 571–583 (2016).
  • Zhou M , LiuZ , ZhaoYet al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J. Biol. Chem.285(28), 21496–21507 (2010).
  • Hu X , JiangH , JiangX. Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biol. Ther.18(5), 331–338 (2017).
  • Jin C , YanB , LuQ , LinY , MaL. The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma. Tumour Biol.37(3), 4025–4033 (2016).
  • Yang P , YangY , AnWet al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J. Gastroenterol. Hepatol.32(4), 837–845 (2017).
  • Francisco LM , SagePT , SharpeAH. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev.236, 219–242 (2010).
  • Reck M , Rodriguez-AbreuD , RobinsonAGet al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med.375(19), 1823–1833 (2016).
  • Meister G , TuschlT. Mechanisms of gene silencing by double-stranded RNA. Nature431(7006), 343–349 (2004).
  • Djebali S , DavisCA , MerkelAet al. Landscape of transcription in human cells. Nature489(7414), 101–108 (2012).
  • Ling H , FabbriM , CalinGA. MicroRNAs and other noncoding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov.12(11), 847–865 (2013).
  • Rajewsky N . MicroRNA target predictions in animals. Nat. Genet.38(Suppl.), S8–S13 (2006).
  • Meister G , LandthalerM , PatkaniowskaA , DorsettY , TengG , TuschlT. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15(2), 185–197 (2004).
  • Xu M , YouY , HunsickerPet al. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol. Reprod.79(1), 51–57 (2008).
  • Heidel JD , LiuJY , YenYet al. Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin. Cancer Res.13(7), 2207–2215 (2007).
  • Harrow J , FrankishA , GonzalezJMet al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res.22(9), 1760–1774 (2012).
  • Clark MB , MattickJS. Long noncoding RNAs in cell biology. Semin. Cell Dev. Biol.22(4), 366–376 (2011).
  • Mourtada-Maarabouni M , HedgeVL , KirkhamL , FarzanehF , WilliamsGT. Growth arrest in human T-cells is controlled by the noncoding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci.121(Pt 7), 939–946 (2008).
  • Khalil AM , GuttmanM , HuarteMet al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106(28), 11667–11672 (2009).
  • Devita VT Jr , RosenbergSA. Two hundred years of cancer research. N. Engl. J. Med.366(23), 2207–2214 (2012).
  • Leach DR , KrummelMF , AllisonJP. Enhancement of antitumor immunity by CTLA-4 blockade. Science271(5256), 1734–1736 (1996).
  • Hamid O , RobertC , DaudAet al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol.30(4), 582–588 (2019).
  • Reck M , SchenkerM , LeeKHet al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. Eur. J. Cancer116, 137–147 (2019).
  • Smyth MJ , TengMW. 2018 Nobel Prize in physiology or medicine. Clin. Transl. Immunol.7(10), e1041 (2018).
  • Rowshanravan B , HallidayN , SansomDM. CTLA-4: a moving target in immunotherapy. Blood131(1), 58–67 (2018).
  • Schwartz JC , ZhangX , FedorovAA , NathensonSG , AlmoSC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature410(6828), 604–608 (2001).
  • Collins AV , BrodieDW , GilbertRJet al. The interaction properties of costimulatory molecules revisited. Immunity17(2), 201–210 (2002).
  • Thompson CB , AllisonJP. The emerging role of CTLA-4 as an immune attenuator. Immunity7(4), 445–450 (1997).
  • Linsley PS , BradshawJ , GreeneJ , PeachR , BennettKL , MittlerRS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity4(6), 535–543 (1996).
  • Shiratori T , MiyatakeS , OhnoHet al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity6(5), 583–589 (1997).
  • Banton MC , InderKL , ValkE , RuddCE , SchneiderH. Rab8 binding to immune cell-specific adaptor LAX facilitates formation of trans-Golgi network-proximal CTLA-4 vesicles for surface expression. Mol. Cell. Biol.34(8), 1486–1499 (2014).
  • Zhu M , GranilloO , WenRet al. Negative regulation of lymphocyte activation by the adaptor protein LAX. J. Immunol.174(9), 5612–5619 (2005).
  • Keir ME , ButteMJ , FreemanGJ , SharpeAH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol.26, 677–704 (2008).
  • Riley JL . PD-1 signaling in primary T cells. Immunol. Rev.229(1), 114–125 (2009).
  • Okazaki T , HonjoT. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol.27(4), 195–201 (2006).
  • Pedoeem A , Azoulay-AlfaguterI , StrazzaM , SilvermanGJ , MorA. Programmed death-1 pathway in cancer and autoimmunity. Clin. Immunol.153(1), 145–152 (2014).
  • Okazaki T , HonjoT. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol.19(7), 813–824 (2007).
  • Khair DO , BaxHJ , MeleSet al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front. Immunol.10, 453 (2019).
  • Seidel JA , OtsukaA , KabashimaK. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol.8, 86 (2018).
  • Robert C , SchachterJ , LongGVet al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med.372(26), 2521–2532 (2015).
  • Balar AV , GalskyMD , RosenbergJEet al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet389(10064), 67–76 (2017).
  • Ferris RL , BlumenscheinGJr , FayetteJ , GuigayJ , ColevasAD , LicitraL. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med.375(19), 1856–1867 (2016).
  • Xu S , TaoZ , HaiBet al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat. Commun.7, 11406 (2016).
  • Li Q , JohnstonN , ZhengXet al. miR-28 modulates exhaustive differentiation of T cells through silencing programmed cell death-1 and regulating cytokine secretion. Oncotarget7(33), 53735–53750 (2016).
  • Schneider C , SettyM , HolmesABet al. MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas. Proc. Natl Acad. Sci. USA111(22), 8185–8190 (2014).
  • Wei J , NduomEK , KongLYet al. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro. Oncol.18(5), 639–648 (2016).
  • Fujita Y , YagishitaS , HagiwaraKet al. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol. Ther.23(4), 717–727 (2015).
  • Chen L , GibbonsDL , GoswamiSet al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun.5, 5241 (2014).
  • Gong AY , ZhouR , HuGet al. MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J. Immunol.182(3), 1325–1333 (2009).
  • Guo W , TanW , LiuSet al. MiR-570 inhibited the cell proliferation and invasion through directly targeting B7-H1 in hepatocellular carcinoma. Tumour Biol.36(11), 9049–9057 (2015).
  • Zhu J , ChenL , ZouLet al. MiR-20b, -21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum. Immunol.75(4), 348–353 (2014).
  • Audrito V , SerraS , StingiAet al. PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget8(9), 15894–15911 (2017).
  • Miao S , MaoX , ZhaoSet al. miR-217 inhibits laryngeal cancer metastasis by repressing AEG-1 and PD-L1 expression. Oncotarget8(37), 62143–62153 (2017).
  • Li W , ZhangT , GuoL , HuangL. Regulation of PTEN expression by noncoding RNAs. J. Exp. Clin. Cancer Res.37(1), 223 (2018).
  • Tang D , ZhaoD , WuYet al. The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J. Cell. Mol. Med. doi:10.1111/jcmm.13657 (2018).
  • Wang N , ZhangT. Downregulation of MicroRNA-135 Promotes Sensitivity of non-small-cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol. Res.26(7), 1005–1014 (2018).
  • Tang Y , HeY , ShiLet al. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget8(24), 39001–39011 (2017).
  • Gao L , RenW , ZhangLet al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol. Carcinog.56(4), 1322–1334 (2017).
  • Sui J , YangX , QiWet al. Long noncoding RNA Linc-USP16 functions as a tumour suppressor in hepatocellular carcinoma by regulating PTEN expression. Cell Physiol. Biochem.44(3), 1188–1198 (2017).
  • Guo G , KangQ , ZhuXet al. A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA. Oncogene34(14), 1768–1779 (2015).
  • Yang C , WangG , YangJ , WangL. Long noncoding RNA NBAT1 negatively modulates growth and metastasis of osteosarcoma cells through suppression of miR-21. Am. J. Cancer Res.7(10), 2009–2019 (2017).
  • Feng Y , ZouW , HuCet al. Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch. Biochem. Biophys.623–624, 20–30 (2017).
  • Cao L , ChenJ , OuB , LiuC , ZouY , ChenQ. GAS5 knockdown reduces the chemo-sensitivity of non-small-cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed. Pharmacother.93, 570–579 (2017).
  • Zhao L , YuH , YiSet al. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget7(29), 45370–45384 (2016).
  • Halvorsen AR , SandhuV , SprautenMet al. Circulating microRNAs associated with prolonged overall survival in lung cancer patients treated with nivolumab. Acta Oncol.57(9), 1225–1231 (2018).
  • Costantini A , JulieC , DumenilCet al. Predictive role of plasmatic biomarkers in advanced non-small-cell lung cancer treated by nivolumab. Oncoimmunology7(8), e1452581 (2018).
  • Sudo K , KatoK , MatsuzakiJet al. Identification of serum microRNAs predicting the response of esophageal squamous-cell carcinoma to nivolumab. Jpn J. Clin. Oncol. doi:10.1093/jjco/hyz146 (2019).
  • Galore-Haskel G , NemlichY , GreenbergEet al. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme. Oncotarget6(30), 28999–29015 (2015).
  • Keizer RJ , HuitemaAD , SchellensJH , BeijnenJH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet.49(8), 493–507 (2010).
  • Liu C , YuJ , LiHet al. Association of time-varying clearance of nivolumab with disease dynamics and its implications on exposure response analysis. Clin. Pharmacol. Ther.101(5), 657–666 (2017).
  • Xie T , LiangJ , LiuNet al. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcgamma receptor I. J. Immunol.188(5), 2437–2444 (2012).
  • Naqvi AR , FordhamJB , NaresS. MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun.22(7), 510–521 (2016).
  • Victor AR , WeigelC , ScovilleSDet al. Epigenetic and posttranscriptional regulation of CD16 expression during human NK cell development. J. Immunol.200(2), 565–572 (2018).
  • Lencer WI , BlumbergRS. A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol.15(1), 5–9 (2005).
  • Ferguson DC , BlancoJG. Regulation of the human Fc-neonatal receptor alpha-chain gene FCGRT by microRNA-3181. Pharm. Res.35(1), 15 (2018).
  • Richtig G , HoellerC , WolfMet al. Body mass index may predict the response to ipilimumab in metastatic melanoma: an observational multi-centre study. PLoS ONE13(10), e0204729 (2018).
  • Mcquade JL , DanielCR , HessKRet al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol.19(3), 310–322 (2018).
  • Cortellini A , BersanelliM , ButiSet al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer7(1), 57 (2019).
  • Xu H , CaoD , HeA , GeW. The prognostic role of obesity is independent of sex in cancer patients treated with immune checkpoint inhibitors: a pooled analysis of 4090 cancer patients. Int. Immunopharmacol.74, 105745 (2019).
  • Aoyagi T , TerracinaKP , RazaA , MatsubaraH , TakabeK. Cancer cachexia, mechanism and treatment. World J. Gastrointest. Oncol.7(4), 17–29 (2015).
  • Turner DC , KondicAG , AndersonKMet al. Pembrolizumab exposure-response assessments challenged by Association of Cancer Cachexia and Catabolic Clearance. Clin. Cancer Res.24(23), 5841–5849 (2018).
  • Fearon KC , GlassDJ , GuttridgeDC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab.16(2), 153–166 (2012).
  • Mace TA , ShakyaR , PitarresiJRet al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut67(2), 320–332 (2018).
  • Wang X , SunW , ShenWet al. Long noncoding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J. Hepatol.64(6), 1283–1294 (2016).
  • Zhang J , ChuM. Targeting of IL-6-relevant long noncoding RNA profiles in inflammatory and tumorous disease. Inflammation42(4), 1139–1146 (2019).
  • Sun Y , PanJ , ZhangN , WeiW , YuS , AiL. Knockdown of long noncoding RNA H19 inhibits multiple myeloma cell growth via NF-kappaB pathway. Sci. Rep.7(1), 18079 (2017).
  • Marques-Rocha JL , SamblasM , MilagroFI , BressanJ , MartinezJA , MartiA. noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J.29(9), 3595–3611 (2015).
  • Zhou Y , XiaZ , ChengZet al. Inducible microRNA-590-5p inhibits host antiviral response by targeting the soluble interleukin-6 (IL6) receptor. J. Biol. Chem.293(47), 18168–18179 (2018).
  • Self-Fordham JB , NaqviAR , UttamaniJR , KulkarniV , NaresS. MicroRNA: dynamic regulators of macrophage polarization and plasticity. Front. Immunol.8, 1062 (2017).
  • Garavelli S , DeRosa V , DeCandia P. The multifaceted interface between cytokines and microRNAs: an ancient mechanism to regulate the good and the bad of inflammation. Front. Immunol.9, 3012 (2018).
  • Shen L , HanJ , WangHet al. Cachexia-related long noncoding RNA, CAAlnc1, suppresses adipogenesis by blocking the binding of HuR to adipogenic transcription factor mRNAs. Int. J. Cancer145(7), 1809–1821 (2019).
  • Spiegelman BM , FlierJS. Adipogenesis and obesity: rounding out the big picture. Cell87(3), 377–389 (1996).
  • Qin L , ChenY , NiuYet al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics11, 320 (2010).
  • Bentzinger CF , WangYX , RudnickiMA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol.4(2), 1–16 (2012).
  • Weintraub H , DavisR , TapscottSet al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science251(4995), 761–766 (1991).
  • Soares RJ , CagninS , ChemelloFet al. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J. Biol. Chem.289(32), 21909–21925 (2014).
  • Blattler SM , VerdeguerF , LiesaMet al. Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle. Mol. Cell. Biol.32(16), 3333–3346 (2012).
  • Gong C , LiZ , RamanujanKet al. A long noncoding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev. Cell34(2), 181–191 (2015).
  • Lu L , SunK , ChenXet al. Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J.32(19), 2575–2588 (2013).
  • Cesana M , CacchiarelliD , LegniniIet al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147(2), 358–369 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.