363
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Treatment of EAE Mice with Treg, G-MDSC and IL-2: a New Insight into Cell Therapy for Multiple Sclerosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 789-798 | Received 23 Feb 2022, Accepted 31 Mar 2022, Published online: 08 Jun 2022

References

  • Steinman L . Immunology of relapse and remission in multiple sclerosis. Annu. Rev. Immunol.32, 257–281 (2014).
  • Couloume L , MichelL. New concepts on immunology of multiple sclerosis. Presse Med. Paris Fr.1983, 104072 (2021).
  • Ghasemi N , RazaviS , NikzadE. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. Yakhteh19(1), 1–10 (2017).
  • Lassmann H , BradlM. Multiple sclerosis: experimental models and reality. Acta Neuropathol. (Berl.)133(2), 223–244 (2017).
  • Archie Bouwer HG , GregoryCRet al. Absence of the memory response to encephalitogen following intergender adoptively transferred experimental autoimmune encephalomyelitis. J. Neuroimmunol.278, 194–199 (2015).
  • Ballerini C . Experimental autoimmune encephalomyelitis. Methods Mol. Biol. Clifton NJ2285, 375–384 (2021).
  • Bunte K , BeiklerT. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int. J. Mol. Sci.20(14), 3394 (2019).
  • Zhang S . The role of transforming growth factor β in T helper 17 differentiation. Immunology155(1), 24–35 (2018).
  • Skundric DS , CruikshankWW , DrulovicJ. Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis. J. Neuroinflammation12(1), 78 (2015).
  • Milovanovic J , ArsenijevicA , StojanovicBet al. Interleukin-17 in chronic inflammatory neurological diseases. Front. Immunol.11, 947 (2020).
  • Li Z , LiD , TsunA , LiB. FOXP3+ regulatory T cells and their functional regulation. Cell. Mol. Immunol.12(5), 558–565 (2015).
  • Cosovanu C , NeumannC. The many functions of Foxp3+ regulatory T cells in the intestine. Front. Immunol.11, 2710 (2020).
  • Verma A , MathurR , FarooqueAet al. T-regulatory cells in tumor progression and therapy. Cancer Manag. Res.11, 10731–10747 (2019).
  • Churlaud G , PitoisetF , JebbawiFet al. Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during Interleukin-2 Therapy. Front. Immunol.6, 171 (2015).
  • Haas J , HugA , ViehöverAet al. Reduced suppressive effect of CD4+CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol.35(11), 3343–3352 (2005).
  • Kumar M , PutzkiN , LimmrothVet al. CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J. Neuroimmunol.180(1-2), 178–184 (2006).
  • Nishibori T , TanabeY , SuL , DavidM. Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease. J. Exp. Med.199(1), 25–34 (2004).
  • Boyman O , SprentJ. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol.12(3), 180–190 (2012).
  • Liao W , LinJ-X , LeonardWJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity38(1), 13–25 (2013).
  • Melero-Jerez C , OrtegaMC , Moliné-VelázquezV , ClementeD. Myeloid derived suppressor cells in inflammatory conditions of the central nervous system. Biochim. Biophys. Acta1862(3), 368–380 (2016).
  • Ioannou M , AlissafiT , LazaridisIet al. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J. Immunol.188(3), 1136–1146 (2012).
  • Zhang W , LiJ , QiG , TuGet al. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J. Transl. Med.16(1), 1–10 (2018).
  • Rosenblum MD , RemediosKA , AbbasAK. Mechanisms of human autoimmunity. J. Clin. Invest.125(6), 2228–2233 (2015).
  • Ghorbani MM , FarazmandfarT , NasirikenariMet al. Evaluation of IL-17 serum level, brain inflammation and demyelination in experimental autoimmune encephalomyelitis C57BL/6 mice model with different doses of myelin oligodendrocyte glycoprotein. Iran J. Allergy Asthma Immunol.18(3), 300–309 (2019).
  • Miller SD , KarpusWJ , DavidsonTS. Experimental autoimmune encephalomyelitis in the mouse. Curr. Protoc. Immunol. Chapter15, Unit-15.1 (2007).
  • Noori-Zadeh A , Mesbah-NaminSA , Saboor-YaraghiAA. Epigenetic and gene expression alterations of FOXP3 in the T cells of EAE mouse model of multiple sclerosis. J. Neurol. Sci.375, 203–208 (2017).
  • Rouse M , NagarkattiM , NagarkattiPS. The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology218(4), 674–682 (2013).
  • Hussain RZ , HopkinsSC , FrohmanEMet al. Direct and consensual murine pupillary reflex metrics: establishing normative values. Auton. Neurosci. Basic Clin.151(2), 164–167 (2009).
  • Bronte V , BrandauS , ChenS-Het al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun.7(1), 12150 (2016).
  • Steinmetz OM , SummersSA , GanP-Yet al. The Th17-defining transcription factor RORγt promotes glomerulonephritis. J. Am. Soc. Nephrol.22(3), 472–483 (2011).
  • Fazekas de St Groth B , ZhuEet al. Flow cytometric detection of human regulatory T cells. Methods Mol. Biol.707, 263–279 (2011).
  • Wing JB , TanakaA , SakaguchiS. Human FOXP3+ Regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity50(2), 302–316 (2019).
  • Sakai R , KomaiK , Iizuka-KogaMet al. Regulatory T cells: pathophysiological roles and clinical applications. Keio J. Med.69(1), 1–15 (2020).
  • Kohm AP , CarpentierPA , AngerHA , MillerSD. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol.169(9), 4712–4716 (2002).
  • Capone A , VolpeE. Transcriptional regulators of T helper 17 cell differentiation in health and autoimmune diseases. Front. Immunol.11, 348 (2020).
  • Cerosaletti K , SchneiderA , SchwedhelmKet al. Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PloS One8(12), e83811 (2013).
  • Verma ND , LamAD , ChiuCet al. Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Sci. Rep.11(1), 10476 (2021).
  • Huan J , CulbertsonN , SpencerLet al. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res.81(1), 45–52 (2005).
  • Danikowski KM , JayaramanS , PrabhakarBS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J. Neuroinflammation14(1), 1–16 (2017).
  • Bjerg L , Brosbøl-RavnborgA , TørringCet al. Altered frequency of T regulatory cells is associated with disability status in relapsing-remitting multiple sclerosis patients. J. Neuroimmunol.249(1-2), 76–82 (2012).
  • Veenstra RG , TaylorPA , ZhouQet al. Contrasting acute graft-versus-host disease effects of Tim-3/galectin-9 pathway blockade dependent upon the presence of donor regulatory T cells. Blood120(3), 682–690 (2012).
  • Fujii W , AshiharaE , HiraiHet al. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J. Immunol.191(3), 1073–1081 (2013).
  • Melero-Jerez C , Alonso-GómezA , MoñivasEet al. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol. Dis.140, 104869 (2020).
  • Yi H , GuoC , YuXet al. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J. Immunol.189(9), 4295–4304 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.