362
Views
0
CrossRef citations to date
0
Altmetric
Review

Hypermutation as a Potential Predictive Biomarker of Immunotherapy Efficacy in High-Grade Gliomas: A Broken Dream?

, ORCID Icon, , ORCID Icon, &
Pages 799-813 | Received 10 Oct 2021, Accepted 06 May 2022, Published online: 07 Jun 2022

References

  • Louis DN , PerryA , ReifenbergerGet al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol.131(6), 803–820 (2016).
  • Brandes AA , BartolottiM , TosoniAet al. Nitrosoureas in the management of malignant gliomas. Curr. Neurol. Neurosci. Rep.16(2), 13 (2016).
  • Lombardi G , DeSalvo GL , BrandesAAet al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol.20(1), 110–119 (2019).
  • Brandes AA , TosoniA , FranceschiEet al. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemother. Pharmacol.64(4), 69–75 (2009).
  • Tosoni A , FranceschiE , ErmaniMet al. Temozolomide three weeks on and one week off as first line therapy for patients with recurrent or progressive low grade gliomas. J. Neurooncol.89(2), 179–185 (2008).
  • Gatto L , FranceschiE , DiNunno Vet al. Liquid biopsy in glioblastoma management: from current research to future perspectives. Oncologist26(10), 865–878 (2021).
  • Weller M , LeRhun E , PreusserM , TonnJC , RothP. How we treat glioblastoma. ESMO Open4(Suppl. 2), e000520 (2019)
  • Weller M , vanden Bent M , TonnJCet al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol.18(6), 315–329 (2017).
  • Weller M , LeRhun E. How did lomustine become standard of care in recurrent glioblastoma?Cancer Treat. Rev.87, 102029 (2020).
  • Le Rhun E , PreusserM , RothPet al. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev.80, 101896 (2019).
  • Stupp R , MasonWP , vanden Bent MJet al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Howitt BE , ShuklaSA , ShollLMet al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol.1(9), 1319–1323 (2015).
  • Galuppini F , DalPozzo CA , DeckertJ , LoupakisF , FassanM , BaffaR. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int.19, 209 (2019).
  • Hodges TR , OttM , XiuJet al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol.19(8), 47–57 (2017).
  • Dolcetti R , VielA , DoglioniCet al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol.154(6), 1805–1813 (1999).
  • Pal T , Permuth-WeyJ , SellersTA. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer113(4), 733–472 (2008).
  • McCord M , SteffensA , JavierRet al. The efficacy of DNA mismatch repair enzyme immunohistochemistry as a screening test for hypermutated gliomas. Acta Neuropathol. Commun.8(1), 15 (2020).
  • Lombardi G , BarresiV , IndraccoloSet al. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: a monocentric, observational and prospective pilot study. Cancers (Basel)12(8), 2283 (2020).
  • Preston BD , AlbertsonTM , HerrAJ. DNA replication fidelity and cancer. Semin. Cancer Biol.20(5), 281–293 (2010).
  • Wang F , ZhaoQ , WangYNet al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol.5(10), 1504–1506 (2019).
  • Rayner E , van GoolIC , PallesCet al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer16(2), 71–81 (2016).
  • Palles C , CazierJB , HowarthKMet al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet.45(2), 136–144 (2013).
  • Li HD , CuevasI , ZhangMet al. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J. Clin. Invest.128(9), 4179–4191 (2018).
  • Scheel AH , AnsénS , SchultheisAMet al. PD-L1 expression in non-small cell lung cancer: correlations with genetic alterations. Oncoimmunology5(5), e1131379 (2016).
  • Gibney GT , WeinerLM , AtkinsMB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol.17(12), 542–551 (2016).
  • Chalmers ZR , ConnellyCF , FabrizioDet al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med.9(1), 34 (2017).
  • Schumacher TN , SchreiberRD. Neoantigens in cancer immunotherapy. Science348(6230), 69–74 (2015).
  • Chabanon RM , PedreroM , LefebvreCet al. Mutational landscape and sensitivity to immune checkpoint blockers. Clin. Cancer Res.22(17), 4309–4321 (2016).
  • Campbell BB , LightN , FabrizioDet al. Comprehensive analysis of hypermutation in human cancer. Cell171(5), 1042–1056 (2017).
  • Hellmann MD , CiuleanuTE , PluzanskiAet al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med.378(22), 2093–2104 (2018).
  • Rosenberg JE , Hoffman-CensitsJ , PowlesTet al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet387(10031), 1909–1920 (2016).
  • Le DT , UramJN , WangHet al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med.372(26), 2509–2520 (2015).
  • ME IJ , Sanz-PamplonaR , HermitteFet al. Colorectal cancer: a paradigmatic model for cancer immunology and immunotherapy. Mol. Aspects Med.69, 123–129 (2019).
  • Mehnert JM , PandaA , ZhongHet al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Invest.126(6), 2334–2340 (2016).
  • Caccese M , IusT , SimonelliMet al. Mismatch-repair protein expression in high-grade gliomas: a large retrospective multicenter study. Int. J. Mol. Sci.21(18), 6716 (2020).
  • Touat M , LiYY , BoyntonANet al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature580(7804), 517–523 (2020).
  • Wang J , CazzatoE , LadewigEet al. Clonal evolution of glioblastoma under therapy. Nat. Genet.48(7), 768–776 (2016).
  • Barthel FP , JohnsonKC , VarnFSet al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature576(7785), 112–120 (2019).
  • Hunter C , SmithR , CahillDPet al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res.66(8), 3987–3991 (2006).
  • Cancer Genome Atlas Research Network . Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
  • Marabelle A , LeDT , AsciertoPAet al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol.38(1), 1–10 (2020).
  • Bersanelli M . Tumour mutational burden as a driver for treatment choice in resistant tumours (and beyond). Lancet Oncol.21(10), 1255–1257 (2020).
  • Bouffet E , LaroucheV , CampbellBBet al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol.34(19), 2206–2211 (2016).
  • Johanns TM , MillerCA , DorwardIGet al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov.6(11), 1230–1236 (2016).
  • Ahmad H , FadulCE , SchiffDet al. Checkpoint inhibitor failure in hypermutated and mismatch repair-mutated recurrent high-grade gliomas. Neurooncol. Pract.6(6), 424–427 (2019).
  • Choi S , YuY , GrimmerMRet al. Temozolomide-associated hypermutation in gliomas. Neuro Oncol.20(10), 1300–1399 (2018).
  • Di Nunno V , FranceschiE , GattoLet al. Predictive markers of immune response in glioblastoma: hopes and facts. Future Oncol.16(15), 1053–1063 (2020).
  • Raimondi A , SepeP , ZattarinEet al. Predictive biomarkers of response to immunotherapy in metastatic renal cell cancer. Front. Oncol.10, 1644 (2020).
  • Herbst RS , SoriaJC , KowanetzMet al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature515(7528), 563–567 (2014).
  • Gandini S , MassiD , MandalàM. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit. Rev. Oncol. Hematol.100, 88–98 (2016).
  • McGranahan N , FurnessAJ , RosenthalRet al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science351(6280), 1463–1469 (2016).
  • Goodman AM , KatoS , BazhenovaLet al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther.16(11), 2598–2608 (2017).
  • Zehir A , BenayedR , ShahRHet al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med.23(6), 703–713 (2017).
  • Johnson A , SeversonE , GayLet al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist22(12), 1478–1490 (2017).
  • Brat DJ , VerhaakRG , AldapeKDet al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med.372(26), 2481–2498 (2015).
  • Wang J , CazzatoE , LadewigEet al. Clonal evolution of glioblastoma under therapy. Nat. Genet.48(7), 768–776 (2016).
  • Kamiya-Matsuoka C , MetrusN , WeathersS-Pet al. Is immuno-oncology therapy effective in hypermutator glioblastomas with somatic or germline mutations? Ann. Oncol. 30, v144 (2019).
  • Sa JK , ChoiSW , ZhaoJet al. Hypermutagenesis in untreated adult gliomas due to inherited mismatch mutations. Int. J. Cancer144(12), 3023–3030 (2019).
  • Loveless A . Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature223(5202), 206–207 (1969).
  • Bodell WJ , GaikwadNW , MillerD , BergerMS. Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors. Cancer Epidemiol. Biomarkers Prev.12(6), 545–551 (2003).
  • Kaina B , ChristmannM , NaumannS , RoosWP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.)6(8), 1079–1099 (2007).
  • Esteller M , Garcia-FoncillasJ , AndionEet al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med.343(19), 1350–1354 (2000).
  • Hegi ME , DiserensAC , GorliaTet al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Chien CH , HsuehWT , ChuangJY , ChangKY. Dissecting the mechanism of temozolomide resistance and its association with the regulatory roles of intracellular reactive oxygen species in glioblastoma. J. Biomed. Sci.28(1), 8 (2021).
  • Johnson BE , MazorT , HongCet al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science343(6167), 189–193 (2014).
  • J. Klempner S , HendifarA , WatersKM. Exploiting temozolomide-induced hypermutation with pembrolizumab in a refractory high-grade neuroendocrine neoplasm: a proof-of-concept case. JCO Precis. Oncol.4, 614–619 (2020).
  • Wu W , KlockowJL , ZhangMet al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol. Res.171, 105780 (2021)
  • McFaline-Figueroa JL , BraunCJ , StanciuMet al. Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to temozolomide. Cancer Res.75(15), 3127–3138 (2015).
  • Cahill DP , LevineKK , BetenskyRAet al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res.3(7), 2038–2045 (2007).
  • Kim J , LeeIH , ChoHJet al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell28(3), 318–328 (2015).
  • Tomczak K , CzerwińskaP , WiznerowiczM. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.)9, 68–77 (2015).
  • Johnson BE , MazorT , HongCet al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science343(6167), 189–193 (2014).
  • Alexandrov LB , Nik-ZainalS , WedgeDCet al. Signatures of mutational processes in human cancer. Nature500(7463), 415–421 (2013).
  • Daniel P , SabriS , ChaddadAet al. Temozolomide induced hypermutation in glioma: evolutionary mechanisms and therapeutic opportunities. Front. Oncol.9, 41 (2019).
  • Indraccolo S , LombardiG , FassanMet al. Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin. Cancer Res.25(6), 1828–1837 (2019).
  • Yip S , MiaoJ , CahillDPet al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res.15(14), 4622–4629 (2009).
  • Felsberg J , ThonN , EigenbrodSet al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int. J. Cancer129(3), 659–670 (2011).
  • van Thuijl HF , MazorT , JohnsonBEet al. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol.129(4), 597–607 (2015).
  • Ricard D , KaloshiG , Amiel-BenouaichAet al. Dynamic history of low-grade gliomas before and after temozolomide treatment. Ann. Neurol.61(5), 484–490 (2007).
  • Izquierdo C , AlentornA , IdbaihAet al. Long-term impact of temozolomide on 1p/19q-codeleted low-grade glioma growth kinetics. J. Neurooncol.136(3), 533–539 (2018).
  • Tang L , DengL , BaiHXet al. Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas. J. Neurooncol.139(3), 563–371 (2018).
  • Sun X , TurcanS. From laboratory studies to clinical trials: temozolomide use in IDH-mutant gliomas. Cells10(5), 1225 (2021).
  • Jonsson P , LinAL , YoungRJet al. Genomic correlates of disease progression and treatment response in prospectively characterized gliomas. Clin. Cancer Res.25(18), 5537–5547 (2019).
  • Caccese M , IusT , SimonelliMet al. Mismatch-repair protein expression in high-grade gliomas: a large retrospective multicenter study. Int. J. Mol. Sci.21(18), 6716 (2020).
  • Yu Y , Villanueva-MeyerJ , GrimmerMRet al. Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro Oncol.23(11), 1872–1884 (2021).
  • Le DT , UramJN , WangHet al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med.372(26), 2509–2520 (2015).
  • Snyder A , MakarovV , MerghoubTet al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med.371(23), 2189–2199 (2014).
  • Carrato C , SanzC , Muñoz-MármolAMet al. The challenge of diagnosing constitutional mismatch repair deficiency syndrome in brain malignancies from young individuals. Int. J. Mol. Sci.22(9), 4629 (2021).
  • Andrianova MA , ChetanGK , SibinMKet al. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours. J. Pathol.243(3), 331–341 (2017).
  • Aslan K , TurcoV , BlobnerJet al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat. Commun.11(1), 931 (2020).
  • Wang Q , HuB , HuXet al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell32(1), 42–56 (2017).
  • De Henau O , RauschM , WinklerDet al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature539(7629), 443–447 (2016).
  • Gatto L , NunnoVD , FranceschiEet al. Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward. Immunotherapy13(11), 879–883 (2021).
  • Rosenthal R , CadieuxEL , SalgadoRet al. Neoantigen-directed immune escape in lung cancer evolution. Nature567(7749), 479–485 (2019).
  • Herrlinger U , TzaridisT , MackFet al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet393(10172), 67 (2019).
  • Germano G , LambaS , RospoGet al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature552(7683), 116–120 (2017).
  • Mo F , PellerinoA , SoffiettiR , RudàR. Blood–brain barrier in brain tumors: biology and clinical relevance. Int. J. Mol. Sci.22(23), 12654 (2021).
  • Daneman R , ZhouL , AgalliuD , CahoyJD , KaushalA , BarresBA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One5(10), 13741 (2010).
  • Desland FA , HormigoA. The CNS and the brain tumor microenvironment: implications for glioblastoma immunotherapy. Int. J. Mol. Sci.21(19), 7358 (2020).
  • Bechmann I , MorG , NilsenJ , ElizaM , NitschR , NaftolinF. FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia27(1), 62–74 (1999).
  • Pittet CL , NewcombeJ , PratA , ArbourN. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. J. Neuroinflammation8, 155 (2011).
  • Mazanet MM , HughesCC. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol.69(7), 3581–3588 (2002).
  • Wherry EJ . T cell exhaustion. Nat. Immunol.12(6), 492–499 (2011).
  • Wherry EJ , KurachiM. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol.15(8), 486–499 (2015).
  • McGrail DJ , PiliéPG , RashidNUet al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol.32(5), 661–672 (2021).
  • Agrawal NS , MillerRJr , LalRet al. Current studies of immunotherapy on glioblastoma. J. Neurol. Neurosurg.1(1), 21000104 (2014).
  • Hegde PS , KaranikasV , EversS. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res.22(8), 1865–1874 (2016).
  • Singh K , HotchkissKM , PatelKKet al. Enhancing T cell chemotaxis and infiltration in glioblastoma. Cancers (Basel)13(21), 5367 (2021).
  • Hourani T , HoldenJA , LiW , LenzoJC , HadjigolS , O’Brien-SimpsonNM. Tumor associated macrophages: origin, recruitment, phenotypic diversity, and targeting. Front. Oncol.11, 788365 (2021).
  • Mantovani A , MarchesiF , MalesciA , LaghiL , AllavenaP. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol.14(7), 399–416 (2017).
  • Zhou J , TangZ , GaoS , LiC , FengY , ZhouX. Tumor-associated macrophages: recent insights and therapies. Front. Oncol.10, 188 (2020).
  • Samstein RM , LeeCH , ShoushtariANet al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet.51(2), 202–625 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.