168
Views
0
CrossRef citations to date
0
Altmetric
Review

T-Cell Based Immunotherapy in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

, &
Pages 99-115 | Published online: 17 Dec 2009

Bibliography

  • Noseworthy JH , LucchinettiC, RodriguezM, WeinshenkerBG: Multiple sclerosis.N. Engl. J. Med.343(13) , 938–952 (2000).
  • Sospedra M , MartinR: Immunology of multiple sclerosis.Annu. Rev. Immunol.23 , 683–747 (2005).
  • Grigoriadis N , HadjigeorgiouGM: Virus-mediated autoimmunity in multiple Sclerosis.J. Autoimmune Dis.3 , 1 (2006).
  • Trapp BD , PetersonJ, RansohoffRM et al.: Axonal transection in the lesions of multiple sclerosis.N. Engl. J. Med.338(5) , 278–285 (1998).
  • Peterson JW , BoL, MorkS, ChangA, TrappBD: Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions.Ann. Neurol.50(3) , 389–400 (2001).
  • Becher B , DurellBG, NoelleRJ: Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12.J. Clin. Invest.110(4) , 493–497 (2002).
  • Chen Y , LangrishCL, McKenzieB et al.: Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis.J. Clin. Invest.116(5) , 1317–1326 (2006).
  • Gran B , Zhang G-X, Yu S et al.: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J. Immunol.169(12) , 7104–7110 (2002).
  • Komiyama Y , NakaeS, MatsukiT et al.: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.J. Immunol.177(1) , 566–573 (2006).
  • Langrish CL , ChenY, BlumenscheinWM et al.: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.J. Exp. Med.201(2) , 233–240 (2005).
  • Mosmann TR , CoffmanRL: Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties.Annu. Rev. Immunol.7 , 145–173 (1989).
  • Romagnani S , ParronchiP, D‘EliosMM et al.: An update on human Th1 and Th2 cells.Int. Arch. Allergy Immunol.113(1–3) , 153–156 (1997).
  • Oppmann B , LesleyR, BlomB et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12.Immunity13(5) , 715–725 (2000).
  • Segal BM , ShevachEM: IL-12 unmasks latent autoimmune disease in resistant mice.J. Exp. Med.184(2) , 771–775 (1996).
  • Segal BM , DwyerBK, ShevachEM: An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease.J. Exp. Med.187(4) , 537–546 (1998).
  • Cua DJ , SherlockJ, ChenY et al.: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.Nature421(6924) , 744–748 (2003).
  • Gran B , ChuN, ZhangGX et al.: Early administration of IL-12 suppresses EAE through induction of interferon-γ.J. Neuroimmunol.156(1–2) , 123–131 (2004).
  • Aggarwal S , GhilardiN, Xie M-H, de Sauvage FJ, Gurney AL: Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem.278(3) , 1910–1914 (2003).
  • Bettelli E , CarrierY, GaoW et al.: Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells.Nature (2006).
  • Gutcher I , UrichE, WolterK, PrinzM, BecherB: Interleukin 18-independent engagement of interleukin 18 receptor-a is required for autoimmune inflammation.Nat. Immunol.7(9) , 946–953 (2006).
  • Liang SC , TanXY, LuxenbergDP et al.: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides.J. Exp. Med.203(10) , 2271–2279 (2006).
  • Veldhoen M , HockingRJ, AtkinsCJ, LocksleyRM, StockingerB: TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.Immunity24(2) , 179–189 (2006).
  • Korn T , BettelliE, GaoW et al.: IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.Nature448(7152) , 484–487 (2007).
  • Nurieva R , YangXO, MartinezG et al.: Essential autocrine regulation by IL-21 in the generation of inflammatory T cells.Nature448(7152) , 480–483 (2007).
  • Batten M , LiJ, YiS et al.: Interleukin-27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells.Nat. Immunol.7(9) , 929–936 (2006).
  • Stumhofer JS , LaurenceA, WilsonEH et al.: Interleukin-27 negatively regulates the development of interleukin 17- producing T helper cells during chronic inflammation of the central nervous system.Nat. Immunol.7(9) , 937–945 (2006).
  • Laurence A , TatoCM, DavidsonTS et al.: Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation.Immunity26(3) , 371–381 (2007).
  • Sakaguchi S : Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses.Ann. Rev. Immunol.22(1) , 531–562 (2004).
  • Traugott U , ReinherzEL, RaineCS: Multiple sclerosis. Distribution of T cells, T-cell subsets and Ia-positive macrophages in lesions of different ages.J. Neuroimmunol.4(3) , 201–221 (1983).
  • Brostoff SW , MasonDW: Experimental allergic encephalomyelitis: successful treatment in vivo with a monoclonal antibody that recognizes T helper cells.J. Immunol.133(4) , 1938–1942 (1984).
  • Pettinelli CB , McFarlinDE: Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2-T lymphocytes.J. Immunol.127(4) , 1420–1423 (1981).
  • Waldor MK , SriramS, HardyR et al.: Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker.Science227(4685) , 415–417 (1985).
  • Hemmer B , HartungHP: Toward the development of rational therapies in multiple sclerosis: what is on the horizon?Ann. Neurol.62(4) , 314–326 (2007).
  • Compston A : The genetics of multiple sclerosis.J. Neurovirol.6(Suppl. 2) , S5–S9 (2000).
  • Hafler DA , CompstonA, SawcerS et al.: Risk alleles for multiple sclerosis identified by a genomewide study.N. Engl. J. Med.357(9) , 851–862 (2007).
  • Haines JL , Ter-MinassianM, BazykA et al.: A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group.Nat. Genet.13(4) , 469–471 (1996).
  • Babbe H , RoersA, WaismanA et al.: Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction.J. Exp. Med.192(3) , 393–404 (2000).
  • Jacobsen M , CepokS, QuakE et al.: Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients.Brain125(3) , 538–550 (2002).
  • Miller A , HaflerDA, WeinerHL: Tolerance and suppressor mechanisms in experimental autoimmune encephalomyelitis: implications for immunotherapy of human autoimmune diseases.FASEB J.5(11) , 2560–2566 (1991).
  • Racke MK , BonomoA, ScottDE et al.: Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.J. Exp. Med.180(5) , 1961–1966 (1994).
  • Liblau RS , TischR, ShokatK et al.: Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis.Proc. Natl Acad. Sci. USA93(7) , 3031–3036 (1996).
  • Kearney ER , PapeKA, LohDY, JenkinsMK: Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo.Immunity1(4) , 327–339 (1994).
  • Miller A , ZhangZJ, SobelRA, al-SabbaghA, WeinerHL: Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. VI. Suppression of adoptively transferred disease and differential effects of oral vs. intravenous tolerization.J. Neuroimmunol.46(1–2) , 73–82 (1993).
  • Miller SD , McRaeBL, VanderlugtCL et al.: Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases.Immunol. Rev.144 , 225–244 (1995).
  • Tan JK , O‘NeillHC: Maturation requirements for dendritic cells in T-cell stimulation leading to tolerance versus immunity.J. Leukoc. Biol.78(2) , 319–324 (2005).
  • Baker D , O‘NeillJK, GschmeissnerSE et al.: Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice.J. Neuroimmunol.28(3) , 261–270 (1990).
  • Pryce G , O‘NeillJK, CroxfordJL et al.: Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis.J. Neuroimmunol.165(1–2) , 41–52 (2005).
  • Hilliard B , VenturaES, RostamiA: Effect of timing of intravenous administration of myelin basic protein on the induction of tolerance in experimental allergic encephalomyelitis.Mult. Scler.5(1) , 2–9 (1999).
  • Hilliard BA , KamounM, VenturaE, RostamiA: Mechanisms of suppression of experimental autoimmune encephalomyelitis by intravenous administration of myelin basic protein: role of regulatory spleen cells.Exp. Mol. Pathol.68(1) , 29–37 (2000).
  • Zhang GX , YuS, LiY et al.: A paradoxical role of APCs in the induction of intravenous tolerance in experimental autoimmune encephalomyelitis.J. Neuroimmunol.161(1–2) , 101–112 (2005).
  • Li H , ZhangGX, ChenY et al.: CD11c+CD11b+ dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis.J. Immunol.181(4) , 2483–2493 (2008).
  • Jiang Z , LiH, FitzgeraldDC, ZhangGX, RostamiA: MOG (35–55) i.v suppresses experimental autoimmune encephalomyelitis partially through modulation of Th17 and JAK/STAT pathways.Eur. J. Immunol.39(3) , 789–799 (2009).
  • London CA , LodgeMP, AbbasAK: Functional responses and costimulator dependence of memory CD4+ T cells.J. Immunol.164(1) , 265–272 (2000).
  • Verbeek R , van der Mark K, Wawrousek EF, Plomp AC, van Noort JM: Tolerization of an established αβ-crystallin-reactive T-cell response by intravenous antigen. Immunology121(3) , 416–426 (2007).
  • Bai XF , ShiFD, XiaoBG et al.: Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-β mRNA.J. Neuroimmunol.80(1–2) , 65–75 (1997).
  • Burkhart C , LiuGY, AndertonSM, MetzlerB, WraithDC: Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10.Int. Immunol.11(10) , 1625–1634 (1999)
  • Bitar DM , WhitacreCC: Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein.Cell Immunol.112(2) , 364–370 (1988).
  • Higgins PJ , WeinerHL: Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments.J. Immunol.140(2) , 440–445 (1988).
  • Weiner HL , MackinGA, MatsuiM et al.: Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis.Science259(5099) , 1321–1324 (1993).
  • Faria AM , WeinerHL: Oral tolerance.Immunol. Rev.206 , 232–259 (2005).
  • Ochi H , AbrahamM, IshikawaH et al.: Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25-LAP+ T cells.Nat. Med.12(6) , 627–635 (2006).
  • Evavold BD , AllenPM: Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand.Science252(5010) , 1308–1310 (1991).
  • Racioppi L , RoncheseF, MatisLA, GermainRN: Peptide-major histocompatibility complex class II complexes with mixed agonist/antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling.J. Exp. Med.177(4) , 1047–1060 (1993).
  • De Magistris MT , AlexanderJ, CoggeshallM et al.: Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor.Cell68(4) , 625–634 (1992).
  • Brocke S , GijbelsK, AllegrettaM et al.: Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein.Nature379(6563) , 343–346 (1996).
  • Goverman J , WoodsA, LarsonL et al.: Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity.Cell72(4) , 551–560 (1993).
  • Brabb T , GoldrathAW, von Dassow P et al.: Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J. Immunol.159(1) , 497–507 (1997).
  • Lafaille JJ , NagashimaK, KatsukiM, TonegawaS: High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice.Cell.78(3) , 399–408 (1994).
  • Offner H , AdlardK, BeboBF Jr et al.: Vaccination with BV8S2 protein amplifies TCR-specific regulation and protection against experimental autoimmune encephalomyelitis in TCR BV8S2 transgenic mice. J. Immunol.161(5) , 2178–2186 (1998).
  • Vandenbark AA , RichC, MooneyJ et al.: Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35–55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice.J. Immunol.171(1) , 127–133 (2003).
  • Moisini I , NguyenP, FuggerL, GeigerTL: Redirecting therapeutic T cells against myelin-specific T lymphocytes using a humanized myelin basic protein-HLA-DR2-ζ chimeric receptor.J. Immunol.180(5) , 3601–3611 (2008).
  • Ito K , BianHJ, MolinaM et al.: HLA-DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis.J. Exp. Med.183(6) , 2635–2644 (1996).
  • Muraro PA , VergelliM, KalbusM et al.: Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111–129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire.J. Clin. Invest.100(2) , 339–349 (1997).
  • Huh J , YaoK, QuigleyL et al.: Limited repertoire of HLA-DRB1*0401-restricted MBP111–129-specific T cells in HLA-DRB1*0401 Tg mice and their pathogenic potential.J. Neuroimmunol.151(1–2) , 94–102 (2004).
  • Fridkis-Hareli M , TeitelbaumD, GurevichE et al.: Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells – specificity and promiscuity.Proc. Natl Acad. Sci. USA91(11) , 4872–4876 (1994).
  • Vandenbark AA , ChouYK, WhithamR et al.: Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial.Nat. Med.2(10) , 1109–1115 (1996).
  • Vandenbark AA , MorganE, BartholomewR et al.: TCR peptide therapy in human autoimmune diseases.Neurochem. Res.26(6) , 713–730 (2001).
  • Bielekova B , GoodwinB, RichertN et al.: Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a Phase II clinical trial with an altered peptide ligand.Nat. Med.6(10) , 1167–1175 (2000).
  • Leonard JP , WaldburgerKE, GoldmanSJ: Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin-12.J. Exp. Med.181(1) , 381–386 (1995).
  • Constantinescu CS , WysockaM, HilliardB et al.: Antibodies against IL-12 prevent superantigen-induced andspontaneous relapses of experimental autoimmune encephalomyelitis.J. Immunol.161(9) , 5097–5104 (1998).
  • Ichikawa M , KohCS, InoueA et al.: Anti-IL-12 antibody prevents the development and progression of multiple sclerosis-like relapsing–remitting demyelinating disease in NOD mice induced with myelin oligodendrocyte glycoprotein peptide.J. Neuroimmunol.102(1) , 56–66 (2000).
  • Segal BM , ConstantinescuCS, RaychaudhuriA et al.: Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing–remitting multiple sclerosis: a Phase II, double-blind, placebo-controlled, randomised, dose-ranging study.Lancet Neurol.7(9) , 796–804 (2008).
  • Hofstetter HH , IbrahimSM, KoczanD et al.: Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis.Cell Immunol.237(2) , 123–130 (2005).
  • Suntharalingam G , PerryMR, WardS et al.: Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412.N. Engl. J. Med.355(10) , 1018–1028 (2006).
  • Jiang H , MiloR, SwovelandP et al.: Interferon β-1b reduces interferon γ-induced antigen-presenting capacity of human glial and B cells.J. Neuroimmunol.61(1) , 17–25 (1995).
  • Panitch HS , HirschRL, SchindlerJ, JohnsonKP: Treatment of multiple sclerosis with g-interferon: exacerbations associated with activation of the immune system.Neurology37(7) , 1097–1102 (1987).
  • Teleshova N , BaoW, KivisakkP et al.: Elevated CD40 ligand expressing blood T-cell levels in multiple sclerosis are reversed by interferon-β treatment.Scand. J. Immunol.51(3) , 312–320 (2000).
  • Genc K , DonaDL, RederAT: Increased CD80+ B cells in active multiple sclerosis and reversal by interferon β-1b therapy.J. Clin. Invest.99(11) , 2664–2671 (1997).
  • Dhib-Jalbut S : Mechanisms of interferon-β action in multiple sclerosis.Mult. Scler.3(6) , 397–401 (1997).
  • Rep MH , SchrijverHM, van Lopik T et al.: Interferon (IFN)-β treatment enhances CD95 and interleukin 10 expression but reduces interferon-γ producing T cells in MS patients. J. Neuroimmunol.96(1) , 92–100 (1999).
  • Calabresi PA , TranquillLR, DambrosiaJM et al.: Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon β-1b.Ann. Neurol.41(5) , 669–674 (1997).
  • Dhib-Jalbut S , JiangH, WilliamsGJ: The effect of interferon β-1b on lymphocyte-endothelial cell adhesion.J. Neuroimmunol.71(1–2) , 215–222 (1996).
  • Schreiner B , MitsdoerfferM, KieseierBC et al.: Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis.J. Neuroimmunol.155(1–2) , 172–182 (2004).
  • Shapiro S , GalboizY, LahatN, KinartyA, MillerA: The ‘immunological-synapse‘ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β.J. Neuroimmunol.144(1–2) , 116–124 (2003).
  • Gran B , TranquillLR, ChenM et al.: Mechanisms of immunomodulation by glatiramer acetate.Neurology55(11) , 1704–1714 (2000).
  • Neuhaus O , FarinaC, WekerleH, HohlfeldR: Mechanisms of action of glatiramer acetate in multiple sclerosis.Neurology56(6) , 702–708 (2001).
  • Duda PW , SchmiedMC, CookSL, KriegerJI, HaflerDA: Glatiramer acetate (Copaxone®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis.J. Clin. Invest.105(7) , 967–976 (2000).
  • Weber MS , StarckM, WagenpfeilS et al.: Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo.Brain127(Pt 6) , 1370–1378 (2004).
  • Weber MS , Prod‘hommeT, YoussefS et al.: Type II monocytes modulate T cell-mediated central nervous system autoimmune disease.Nat. Med.13(8) , 935–943 (2007).
  • Maier K , KuhnertAV, TaheriN et al.: Effects of glatiramer acetate and interferon-β on neurodegeneration in a model of multiple sclerosis:a comparative study.Am. J. Pathol.169(4) , 1353–1364 (2006).
  • Yednock TA , CannonC, FritzLC et al.: Prevention of experimental autoimmune encephalomyelitis by antibodies against a4b1 integrin.Nature356(6364) , 63–66 (1992).
  • Stuve O , MarraCM, JeromeKR et al.: Immune surveillance in multiple sclerosis patients treated with natalizumab.Ann. Neurol.59(5) , 743–747 (2006).
  • Stuve O : The effects of natalizumab on the innate and adaptive immune system in the central nervous system.J. Neurol. Sci.274(1–2) , 39–41 (2008).
  • Massacesi L , ParigiA, BarilaroA et al.: Efficacy of azathioprine on multiple sclerosis new brain lesions evaluated using magnetic resonance imaging.Arch. Neurol.62(12) , 1843–1847 (2005).
  • Amato MP , PracucciG, PonzianiG et al.: Long-term safety of azathioprine therapy in multiple sclerosis.Neurology43(4) , 831–833 (1993).
  • Casetta I , IulianoG, FilippiniG: Azathioprine for multiple sclerosis.Cochrane Database Syst. Rev. (4) , CD003982 (2007).
  • Fox EJ : Mechanism of action of mitoxantrone.Neurology63(12 Suppl. 6) , S15–S18 (2004).
  • Martinelli Boneschi F , RovarisM, CapraR, ComiG: Mitoxantrone for multiple sclerosis.Cochrane Database Syst. Rev. (4) , CD002127 (2005).
  • Fox EJ : Management of worsening multiple sclerosis with mitoxantrone: a review.Clin. Ther.28(4) , 461–474 (2006).
  • Sipe JC , RomineJS, KoziolJA et al.: Cladribine in treatment of chronic progressive multiple sclerosis.Lancet344(8914) , 9–13 (1994).
  • Sipe JC , RomineJS, KoziolJA et al.: Development of cladribine treatment in multiple sclerosis.Mult. Scler.1(6) , 343–347 (1996).
  • Rice GP , FilippiM, ComiG: Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI Study Group.Neurology54(5) , 1145–1155 (2000).
  • Brousil JA , RobertsRJ, SchleinAL: Cladribine: an investigational immunomodulatory agent for multiple sclerosis.Ann. Pharmacother.40(10) , 1814–1821 (2006).
  • Stelmasiak Z , SolskiJ, NowickiJ et al.: Effect of parenteral cladribine on relapse rates in patients with relapsing forms of multiple sclerosis: results of a 2-year, double-blind, placebo-controlled, crossover study.Mult. Scler.15(6) , 767–770 (2009).
  • Budde K , SchmouderRL, BrunkhorstR et al.: First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients.J. Am. Soc. Nephrol.13(4) , 1073–1083 (2002).
  • Fujino M , FuneshimaN, KitazawaY et al.: Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment.J. Pharmacol. Exp. Ther.305(1) , 70–77 (2003).
  • Mehling M , BrinkmannV, AntelJ et al.: FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis.Neurology71(16) , 1261–1267 (2008).
  • Brinkmann V , CysterJG, HlaT: FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function.Am. J. Transplant.4(7) , 1019–1025 (2004).
  • Mandala S , HajduR, BergstromJ et al.: Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists.Science296(5566) , 346–349 (2002).
  • Matloubian M , LoCG, CinamonG et al.: Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1.Nature427(6972) , 355–360 (2004).
  • O‘Connor P , ComiG, MontalbanX et al.: Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a Phase II extension study.Neurology72(1) , 73–79 (2009).
  • Waldmann TA : Anti-Tac (daclizumab, Zenapax®) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey.J. Clin. Immunol.27(1) , 1–18 (2007).
  • Bielekova B , RichertN, HowardT et al.: Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon β.Proc. Natl Acad. Sci. USA101(23) , 8705–8708 (2004).
  • Rose JW , WattHE, WhiteAT, CarlsonNG: Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody.Ann. Neurol.56(6) , 864–867 (2004).
  • Bielekova B , CatalfamoM, Reichert-ScrivnerS et al.: Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis.Proc. Natl Acad. Sci. USA103(15) , 5941–5946 (2006).
  • Coles AJ , CompstonDA, SelmajKW et al.: Alemtuzumab vs. interferon β-1a in early multiple sclerosis.N. Engl. J. Med.359(17) , 1786–1801 (2008).
  • Cox AL , ThompsonSA, JonesJL et al.: Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis.Eur. J. Immunol.35(11) , 3332–3342 (2005).
  • Coles AJ , WingM, SmithS et al.: Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis.Lancet354(9191) , 1691–1695 (1999).
  • Jones JL , PhuahCL, CoxAL et al.: IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H).J. Clin. Invest. (2009).
  • Herrmann ML , SchleyerbachR, KirschbaumBJ: Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases.Immunopharmacology47(2–3) , 273–289 (2000).
  • Korn T , MagnusT, ToykaK, JungS: Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide – mechanisms independent of pyrimidine depletion.J. Leukoc. Biol.76(5) , 950–960 (2004).
  • Massacesi L , AbbamondiAL, SarloF, AmaducciL: The control of experimental allergic encephalomyelitis with retinoic acid. Further studies.Riv. Neurol.57(3) , 166–169 (1987).
  • Roberts AB , SpornMB: Mechanistic interrelationships between two superfamilies: the steroid/retinoid receptors and transforming growth factor-β.Cancer Surv.14 , 205–220 (1992).
  • Mucida D , ParkY, KimG et al.: Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid.Science317(5835) , 256–260 (2007).
  • Bettelli E , OukkaM, KuchrooVK: Th-17 cells in the circle of immunity and autoimmunity.Nat. Immunol.8(4) , 345–350 (2007).
  • Korn T , ReddyJ, GaoW et al.: Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.Nat. Med.13(4) , 423–431 (2007).
  • Kohm AP , CarpentierPA, AngerHA, MillerSD: Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis.J. Immunol.169(9) , 4712–4716 (2002).
  • Viglietta V , Baecher-AllanC, WeinerHL, HaflerDA: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis.J. Exp. Med.199(7) , 971–979 (2004).
  • Beriou G , CostantinoCM, AshleyCW et al.: IL-17 producing human peripheral regulatory T cells retain suppressive function.Blood113(18) , 4240–4249 (2009).
  • Zhou L , Ivanov,II, SpolskiR et al.: IL-6 programs Th-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.Nat. Immunol.8(9) , 967–974 (2007).
  • Wei L , LaurenceA, EliasKM, O‘SheaJJ: IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner.J. Biol. Chem.282(48) , 34605–34610 (2007).
  • Huber M , BrustleA, ReinhardK et al.: IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype.Proc. Natl Acad. Sci. USA105(52) , 20846–20851 (2008).
  • Wolk K , SabatR: Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells.Cytokine Growth Factor Rev.17(5) , 367–380 (2006).
  • Chung Y , YangX, ChangSH et al.: Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes.Cell Res.16(11) , 902–907 (2006).
  • Zheng Y , ValdezPA, DanilenkoDM et al.: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens.Nat. Med.14(3) , 282–289 (2008).
  • Kreymborg K , EtzenspergerR, DumoutierL et al.: IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis.J. Immunol.179(12) , 8098–8104 (2007).
  • Fitzgerald DC , CiricB, TouilT et al.: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis.J. Immunol.179(5) , 3268–3275 (2007).
  • Awasthi A , CarrierY, PeronJP et al.: A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells.Nat. Immunol.8(12) , 1380–1389 (2007).
  • Fitzgerald DC , ZhangGX, El-BehiM et al.: Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells.Nat. Immunol.8(12) , 1372–1379 (2007).
  • Dardalhon V , AwasthiA, KwonH et al.: IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3- effector T cells.Nat. Immunol.9(12) , 1347–1355 (2008).
  • Veldhoen M , UyttenhoveC, van Snick J et al.: Transforming growth factor-β ‘reprograms‘ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol.9(12) , 1341–1346 (2008).
  • Weinshenker BG , BassB, KarlikS, EbersGC, RiceGP: An open trial of OKT3 in patients with multiple sclerosis.Neurology41(7) , 1047–1052 (1991).
  • Lindsey JW , HodgkinsonS, MehtaR et al.: Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis.Ann. Neurol.36(2) , 183–189 (1994).
  • Lindsey JW , HodgkinsonS, MehtaR et al.: Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis.Neurology44(3 Pt 1) , 413–419 (1994).
  • van Oosten BW , LaiM, BarkhofF et al.: A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis.Mult. Scler.1(6) , 339–342 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.