184
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy in asthma

Pages 711-725 | Published online: 29 Sep 2010

Bibliography

  • Eder W , EgeMJ, von Mutius E: The asthma epidemic. N. Engl. J. Med.355 , 2226–2235 (2006).
  • Weiss KB , SullivanSD, LyttleCS: Trends in the costs of asthma in the United States, 1985–1994.J. Allergy Clin. Immunol.106 , 493–499 (2000).
  • Lloyd CM , RobinsonDS: Allergen-induced airway remodeling.Eur. Resp. J.29 , 1020–1032 (2007).
  • Slats AM , JanssenK, van Schadewick A et al.: Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma. J. Allergy Clin. Immunol.121 , 1196–1202 (2008).
  • Holgate ST , ArshadHS, RobertsGCet al.: A new look at the pathogenesis of asthma.Clin. Sci. (Lond.)118 , 439–450 (2009).
  • Pipet A , BotturiK, PinotD, VervloetD, MagnanA: Allergen-specific immunotherapy in allergic rhinitis and asthma. Mechanisms and proof of efficacy.Respir. Med.103 , 800–812 (2009).
  • Frew AJ : Allergen immunotherapy.J. Allergy Clin. Immunol.125 , S306–S313 (2010).
  • Cox L : Allergen immunotherapy and asthma: efficacy, safety and other considerations.Allergy Asthma Proc.29 , 80–89 (2008).
  • Abramson MJ , PuyRM, WeinerJM: Is allergen immunotherapy effective in asthma? A meta-analysis of randomized controlled trials.Am. J. Respir. Crit. Care Med.151 , 969–974 (1995).
  • Abramson MJ : Allergen immunotherapy in asthma.Cochrane Database Syst. Rev.4 , CD001186 (2003).
  • Ross RN , NelsonHS, FinegoldI: Effectiveness of specific immunotherapy in the treatment of asthma: a meta-analysis of prospective, randomized, double-blind, placebo-controlled studies.Clin. Ther.22 , 329–341 (2000).
  • Nelson HS : Multi-allergen immunotherapy for allergic rhinitis and asthma. J. Allergy Clin. Immunol.123 , 763–769 (2009).
  • Halken S , LauS: New visions in specific immunotherapy in children: an iPAC summary and future trends.Pediatr. Allergy Immunol.19(Suppl. 19) , 60–70 (2008).
  • Adkinson NF Jr, Eggleston PA, Eney D et al.: A controlled trial of immunotherapy for asthma in allergic children. N. Engl. J. Med.336 , 324–331 (1997).
  • Hedlin G , WilleS, BrowaldhLet al.: Immunotherapy in children with allergic asthma: effect on bronchial hyperreactivity and pharmacotherapy.J. Allergy Clin. Immunol.103 , 609–614 (1999).
  • Akdis M , AkdisCA: Mechanisms of allergen-specific immunotherapy.J. Allergy Clin. Immunol.119 , 780–791 (2007).
  • Larch M , AkdisCA, ValentaR: Immunological mechanisms of allergen-specific immunotherapy.Nat. Rev. Immunol.6 , 761–771 (2006).
  • Hawrylowicz CM , O‘GarraA: Potential role of IL-10-secreting regulatory T cells in allergy and asthma.Nat. Rev. Immunol.5 , 271–283 (2005).
  • Benjaponpitak S , OroA, MaguireP, MarinkovichV, DeKruyffRH, UmetsuDT: The kinetics of change in cytokine production by CD4 T cells during conventional allergen immunotherapy.J. Allergy Clin. Immunol.103 , 468–475 (1999).
  • Faith A , RichardsDF, VerhoefA, LambJR, LeeTH, HawrylowiczCM: Impaired secretion of interleukin-4 and interleukin-13 by allergen-specific T cells correlates with defective nuclear expression of NF-AT2 and Jun B: relevance to immunotherapy.Clin. Exp. Allergy3 , 1209–1215 (2003).
  • Kim HB , JinHS, LeeSYet al.: The effect of rush immunotherapy with house dust mite in the production of IL-5 and IFN-γ from the peripheral blood T cells of asthmatic children.J. Korean Med. Sci.24 , 392–397 (2009).
  • Chen ZG , LiM, ChenYFet al.: Effects of dermatophagoides pteronyssinus allergen-specific immunotherapy on the serum interleukin-13 and pulmonary functions in asthmatic children.Chin. Med. J. (Engl.)122 , 1157–1161 (2009).
  • Till S , WalkerS, DickasonRet al.: IL-5 production by allergen-stimulated T cells following grass pollen immunotherapy for seasonal allergic rhinitis.Clin. Exp. Immunol.110 , 114–121 (1997).
  • Wachholz PA , Nouri-AriaKT, WilsonDRet al.: Grass pollen immunotherapy for hayfever is associated with increases in local nasal but not peripheral Th1:Th2 cytokine ratios.Immunology105 , 56–62 (2002).
  • Francis JN , TillSJ, DurhamSR: Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy.J. Allergy Clin. Immunol.111 , 1255–1261 (2003).
  • Durham SR , YingS, VarneyVAet al.: Grass pollen immunotherapy inhibits allergen-induced infiltration of CD4+ T lymphocytes and eosinophils in the nasal mucosa and increases the number of cells expressing messenger RNA for interferon-≫.J. Allergy Clin. Immunol.97 , 1356–1365 (1996).
  • Wilson DR , Nouri-AriaKT, WalkerSMet al.: Grass pollen immunotherapy: symptomatic improvement correlates with reductions in eosinophils and IL-5 mRNA expression in the nasal mucosa during the pollen season.J. Allergy Clin. Immunol.107 , 971–976 (2001).
  • Nouri-Aria KT , PiletteC, JacobsonMR, WatanabeH, DurhamSR: IL-9 and c-Kit+mast cells in allergic rhinitis during seasonal allergen exposure: effect of immunotherapy.J. Allergy Clin. Immunol.116 , 73–79 (2005).
  • Plewako H , WosinskaK, ArvidssonMet al.: Basophil interleukin 4 and interleukin 13 production is suppressed during the early phase of rush immunotherapy.Int. Arch. Allergy Immunol.141 , 346–353 (2006).
  • Plewako H , WosinskaK, ArvidssonM, BjorkanderJ, HakanssonL, RakS: Production of interleukin-12 by monocytes and interferon-γ by natural killer cells in allergic patients during rush immunotherapy.Ann. Allergy Asthma Immunol.97 , 464–468 (2006).
  • James LK , DurhamSR: Update on mechanisms of allergen injection immunotherapy.Clin. Exp. Allergy38 , 1074–1088 (2008).
  • Francis J , JamesL, ParaskevopoulosGet al.: Grass pollen immunotherapy: Il-10 induction and suppression of late responses precedes IgG4 inhibitory antibody activity.J. Allergy Clin. Immunol.121 , 1120–1125 (2008).
  • Calamita Z , SaconatoH, PeláAB, AtallahAN: Efficacy of sublingual immunotherapy in asthma: systematic review of randomized-clinical trials using the Cochrane Collaboration method.Allergy61 , 1162–1172 (2006).
  • Compalati E , PassalacquaG, BoniniM, CanonicaGW: The efficacy of sublingual immunotherapy for house dust mites respiratory allergy: results of a GA2LEN meta-analysis.Allergy64 , 1570–1579 (2009).
  • Marseglia GL , IncorvaiaC, La Rosa M, Frati F, Marcucci F: Sublingual immunotherapy in children: facts and needs. Ital. J. Pediatr.35 , 31 (2009).
  • Larenas-Linnermann DE , CoxLS: Sublingual immunotherapy for asthma. Need for high quality meta-analyses to prove the concept.Allergy62 , 704–705 (2007).
  • Pajno GB , PassalacquaG, VitaDet al.: Sublingual immunotherapy abrogates seasonal bronchial hyperrresponsiveness in children with Parietaria-induced respiratory allergy; a randomized controlled trial.Allergy59 , 883–887 (2004).
  • Nieto A , MazonA, PamiesR, BrunoL, NavarroM, MontanesA: Sublingual immunotherapy for allergic respiratory diseases: an evaluation of meta-analyses.J. Allergy Clin. Immunol.124 , 157–161 (2009).
  • Kuo CH , WangWL, ChuYT, LeeMS, HungCH: Sublingual immunotherapy in children: an updated review.Pediatr. Neonatol.50 , 44–49 (2009).
  • Larenas-Linnemann D : Certainties and doubts about sublingual and oral immunotherapy in children.Curr. Opin. Allergy Clin. Immunol.9 , 558–567 (2009).
  • Bohle B , KinaciyanT, GerstmayrM, RadakovicsA, Jahn-SchmidB, EbnerC: Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation.J. Allergy Clin. Immunol.120 , 707–713 (2007).
  • Moingeon P , BatardT, FadelR, FratiF, SieberJ, Van Overtvelt L: Immune mechanisms of allergen-specific sublingual immunotherapy. Allergy61 , 151–165 (2006).
  • Tseng SH , FuLS, NongBR, WengJD, ShyurSD: Changes in serum specific IgG4 and IgG4/IgE ratio in mite-sensitized Taiwanese children with allergic rhinitis receiving short-term sublingual-swallow immunotherapy: a multicenter, randomized, placebo-controlled trial.Asian Pac. J. Allergy Immunol.26 , 105–112 (2008).
  • Allam JP , NovakN, FuchsCet al.: Characterization of dendritic cells from human oral mucosa: a new Langerhans cell type with high constitutive FcεRI expression.J. Allergy Clin. Immunol.112 , 141–148 (2003).
  • Allam JP , NiederhagenB, BüchelerM, et al.: Comparative analysis of nasal and oral mucosa dendritic cells. Allergy61 , 166–172 (2006).
  • Scadding G , DurhamS: Mechanisms of sublingual immunotherapy.J. Asthma46 , 322–334 (2009).
  • Maestrelli P , ZanollaL, PozzanM, Fabbri LM: Effect of specific immunotherapy added to pharmacologic treatment and allergen avoidance in asthmatic patients allergic to house dust mite. J. Allergy Clin. Immunol.113 , 643–649 (2004).
  • Jacobsen L , NiggemannB, DreborgSet al.; for the PAT investigator group: Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy62 , 943–948 (2007).
  • Niggemann B , JacobsenL, DreborgSet al.: Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children.Allergy61 , 855–859 (2006).
  • Möller C , DreborgS, FerdousiHAet al.: Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study).J. Allergy Clin. Immunol.109 , 251–256 (2002).
  • Quirino T , IemoliE, SicilianiE: Sublingual versus injective immunotherapy in grass pollen allergic patients: a double blind (double dummy) study.Clin. Exp. Allergy26 , 1253–1261 (1996).
  • Mungan D , MisirligilZ, GürbüzL: Comparison of the efficacy of subcutaneous and sublingual immunotherapy in mite-sensitive patients with rhinitis and asthma – a placebo controlled study.Ann. Allergy Asthma Immunol.82 , 485–490 (1999).
  • Khinchi MS , PoulsenLK, CaratF, AndréC, HansenAB, MallingHJ: Clinical efficacy of sublingual and subcutaneous birch pollen allergen-specific immunotherapy: a randomized, placebo-controlled, double-blind, double-dummy study.Allergy5945–5953 (2004).
  • Mauro M , RusselloM, IncorvaiaC, GazzolaGH, Di Cara G, Frati F: Comparison of efficacy, safety and immunologic effects of subcutaneous and sublingual immunotherapy in birch pollinosis: a randomized study. Eur. Ann. Allergy Clin. Immunol.39, 119–122 (2007).
  • Eifan AO , AkkocT, YildizAet al.: Clinical efficacy and immunological mechanisms of sublingual and subcutaneous immunotherapy in asthmatic/rhinitis children sensitized to house dust mite: an open randomized controlled trial.Clin. Exp. Allergy40 , 922–932 (2010).
  • Larenas-Linnermann D : Subcutaneous and sublingual immunotherapy in children: complete update on controversies, dosing and efficacy.Curr Allergy Asthma Rep.8 , 465–474 (2008).
  • Giovane A , BardareM, PassalacquaG: A three year double blind placebo controlled study with oral immunotherapy to pediatric patients.Clin. Exp. Allergy24 , 53–59 (1994).
  • Durham SR , EmmingerW, KappAet al.: Long term clinical efficacy in grass pollen-induced rhinoconjunctivitis after treatment with SQ-standardized grass allergy immunotherapy.J. Allergy Clin. Immunol.125 , 131–138 (2010).
  • Moller C , DreborgS, LannerA, BjorkstenB: Oral immunotherapy of children with rhinoconjuctivitis due to birch pollen allergy.Allergy41 , 271–277 (1986).
  • Mosbech H , DrebergS, MadsennF: High dose grass pollen tablets used for hyposensitization in hay fever patients. A 1 year double blind placebo controlled study.Allergy42 , 451–455 (1987).
  • Canonica GW , PassalacquaG: Noninjection routes for immunotherapy.J. Allergy Clin. Immunol.111 , 437–448 (2003).
  • Tari MG , MancinoM, MontiG: Immunotherapy by inhalation of allergen in powder in house dust allergic asthma: a double blind study.J. Invest. Allergol. Clin. Immunol.2 , 59–67 (1992).
  • Schumacher MJ , PainMC: Intranasal immunotherapy with polymerized grass pollen allergens.Allergy37 , 241–248 (1982).
  • Kussebi F , KaramlooF, RhynerCet al.: A major allergen gene-fusion protein for potential usage in allergen-specific immunotherapy.J. Allergy Clin. Immunol.115 , 323–329 (2005).
  • Karamloo F , Schmid-GrendelmeierP, KussebiFet al.: Prevention of allergy by a recombinant multi-allergen vaccine with reduced IgE binding and preserved T cell epitopes.Eur. J. Immunol.35 , 3268–3276 (2005).
  • Chapman MD , SmithAM, VailesLD, ArrudaLK, DhanarajV, PomesA: Recombinant allergens for diagnosis and therapy of allergic diseases.J. Allergy Clin. Immunol.106 , 409–418 (2000).
  • Jutel M , JaegerL, SuckR, MeyerH, FiebigH, CromwellO: Allergen-specific immunotherapy with recombinant grassJ. Allergy Clin. Immunol.116 , 608–613 (2005).
  • Niederberger V , HorakF, NiederbergerV et al.: Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl Acad. Sci. USA101 , 14677–14682 (2004).
  • HayGlass KT , StefuraBP: Anti-interferon-γ treatment blocks the ability of glutaraldehyde-polymerized allergens to inhibit specific IgE responses.J. Exp. Med.173 , 279–285 (1991).
  • Secrist H , DeKruyffRH, UmetsuDT: Interleukin 4 production by CD4+ cells from allergic individuals is modulated by allergen concentration and antigen-presenting cell type.J. Exp. Med.181 , 1081–1090 (1995).
  • Malet A , LluchM, ValeroAL, CasanovasM: Clinical and immunological effects of immunotherapy with glutaraldehyde modified house dust mite extract.Allergol. Immunopathol. (Madr.)22 , 226–232 (1994).
  • Ohman S , BjorkanderJ, DreborgS, LannerA, MallingHJ, WeekeB: A preliminary study of immunotherapy with a monomethoxy polyethylene glycol modified honey bee venom preparation.Allergy41 , 81–88 (1986).
  • Pollock KG , ConacherM, WeiXQ, AlexanderJ, BrewerJM: Interleukin 18 plays a role in both the alum-induced T helper 2 response and the T helper 1 response induced by alum-adsorbed interleukin-12.Immunology108 , 137–143 (2003).
  • Henriksen-Lacey M , ChristensenD, BramwellVWet al.: Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response.J. Con. Rel.145(2) , 102–108 (2010).
  • Arora N , GangalSV: Efficacy of liposome entrapped allergen in regulation of IgE response in mice.Clin. Exp. Allergy22 , 35–42 (1992).
  • Gangal SV , AroraN, ChughL, SehraS, SinghB, MalikBK: Immunomodulation and immunotherapy using liposome entrapped allergens.Arb. Paul Ehrlich Inst. Bundesamt. Sera. Impfstoffe Frankf. AM93 , 267–273 (1999).
  • Sehra S , ChugL, GangalSV: Polarized Th1 responses by liposome entrapped allergen and its potential in immunotherapy of allergic disorders.Clin. Exp. Allergy28 , 1530–1537 (1998).
  • Cevc G , GebauerD, StieberJ, SchätzleinA, BlumeG: Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin.Biochim. Biophys. Acta19(1368) , 201–215. (1998).
  • Von Garnier C , AstoriM, KettnerAet al.: Allergen-derived long peptide immunotherapy down-regulates specific IgE response and protects from anaphylaxis.Eur. J. Immunol.30 , 1638–1645 (2000).
  • Larche M : Update on the current status of peptide immunotherapy.J. Allergy Clin. Immunol.119 , 906–909 (2007).
  • Campbell JD , BucklandKF, McMillanSJet al.: Peptide immunotherapy in allergic asthma generates IL-10 dependent immunological tolerance associated with linked epitope suppression.J. Exp. Med.206 , 1535–1547 (2009).
  • Pene J , DesrochesA, ParadisLet al.: Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats.J. Allergy Clin. Immunol.102 , 571–578 (1998).
  • Alexander C , TarziM, LarcheM, KayAB: The effect of Fel d 1-derived T cell peptides on upper and lower airway outcome measurements in cat-allergic subjects.Allergy60 , 1269–1274 (2005).
  • Oldfield W , LarcheM, KayA: Effect of T cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomized controlled trial.Lancet360 , 47–53 (2002).
  • Verhoef A , AlexanderC, KayAB, LarcheM: T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity.PLoS Med.2 , E78 (2005).
  • Hartl A , HochreiterR, StepanoskaT, FerreiraF, ThalhamerJ: Characterization of the protective and therapeutic efficiency of a DNA vaccine encoding the major birch pollen allergen Bet v la.Allergy59 , 65–73 (2004).
  • Jarman ER , LambJR: Reversal of established CD4+ type 2 T helper-mediated allergic airway inflammation and eosinophilia by therapeutic treatment with DNA vaccines limits progression towards chronic inflammation and remodeling.Immunology112 , 631–642 (2004).
  • Horner AA , RedeckeV, RazE: Toll-like receptor ligands: hygiene, atopy and therapeutic implications.Curr. Opin. Allergy Clin. Immunol.4 , 555–561 (2004).
  • Krieg AM : Therapeutic potential of Toll-like receptor 9 activation.Nat. Rev. Drug Discov.5 , 471–484 (2006).
  • Klinman DM , YiAK, BeaucageSL, ConoverJ, KriegAM: CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon-γ.Proc. Natl Acad. Sci. USA93 , 2879–2883 (1996).
  • Roman M , Martin-OrozcoE, GoodmanJSet al.: Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants.Nat. Med.3 , 849–854 (1997).
  • Shirota H , SanoK, KikuchiT, TamuraG, ShiratoK: Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligode-oxynucleotides as a novel antigen-specific immunomodulator.J. Immunol.164 , 5575–5582 (2000).
  • Santeliz JV , Van Nest G, Traquina P, Larsen E, Wills-Karp M: Amb a 1-linked CpG oligodeoxynucleotides reverse established airway hyperresponsiveness in a murine model of asthma. J. Allergy Clin. Immunol.109 , 455–462 (2002).
  • Tighe H , TakabayashiK, SchwartzDet al.: Conjugation of immunostimulatory DNA to the short ragweed allergen Amb a 1 enhances its immunogenicity and reduces its allergenicity.J. Allergy Clin. Immunol.106 , 124–134 (2000).
  • Horner AA , TakabayashiK, BeckLet al.: Optimized conjugation ratios lead to allergen immunostimulatory oligodeoxynucleotide conjugates with retained immunogenicity and minimal anaphylactogenicity.J. Allergy Clin. Immunol.110 , 413–420 (2002).
  • Marshall JD , AbtahiS, EidenJJet al.: Immunostimulatory sequence DNA linked to the Amb a 1 allergen promotes T(H)1 cytokines expression while downregulating T(H)2 cytokine expression in PBMCs from human patients with ragweedAllergy J. Allergy Clin. Immunol.108 , 191–197 (2001).
  • Creticos PS , LichtensteinLM: Progress in the development of new methods of immunotherapy: potential application of immunostimulatory DNA-conjugated to allergens for treatment of allergic respiratory conditions.Arb. Paul Ehrlich Inst. Bundesamt. Sera. Impfstoffe Frankf. AM.94 , 304–312 (2003).
  • Creticos PS , ChenYH, SchroederJT: New approaches in immunotherapy: allergen vaccination with immunostimulatory DNA.Immunol. Allergy Clin. North Am.24 , 569–581 (2004).
  • Gauvreau GM , HesselEM, BouletLP, CoffmanRL, O‘ByrnePM: Immunostimulatory sequences regulate interferon-inducible genes but not allergic airwave responses.Am. J. Respir. Crit. Care Med.174 , 15–20 (2006).
  • Revets H , PynaertG: Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses.J. Immunol.174 , 1097–1103 (2005).
  • Taylor RC , RichmondP, UphamJW: Toll-like receptor 2 ligands inhibit TH2 responses.J. Allergy Clin. Immunol.117 , 1148–1154 (2006).
  • Takeda K , AkiraS: Toll-like receptors in innate immunity.Int. Immunol.17 , 1–14. (2005).
  • Klinman DM : Immunotherapeutic uses of CpG oligodeoxynucleotides.Nat. Rev. Immunol.4(4) , 249–258 (2004).
  • Antoniu SA : Daclizumab a novel corticosteroid-sparing therapy for asthma?Expert Opin. Investig. Drugs18 , 369–371 (2009).
  • Busse WW , IsraelE, NelsonHSet al.: Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial.Am. J. Respir. Crit. Care Med.178 , 1002–1008 (2008).
  • Kips JC , TournovKG, PauwelsRA: New anti-asthma therapies: suppression of the effect of interleukin (IL)-4 and IL-5.Eur. Respir. J.17 , 499–506 (2001).
  • Borish LC , NelsonHS, LanzMJet al.: Interleukin-4 receptor in moderate atopic asthma. A Phase I/II randomized, placebo-controlled trial.Am. J. Respir. Crit. Care Med.160 , 1816–1823 (1999).
  • Borish LC , NelsonHS, CorrenJet al.: Efficacy of soluble IL-4 receptor for the treatment of adults with asthma.J. Allergy Clin. Immunol.107 , 963–970 (2001).
  • Steinke JW : Anti-interleukin-4 therapy.Immunol. Allergy Clin. North Am.24 , 599–614 (2004).
  • Burmeister Getz E , FisherDM, FullerR: Human pharmacokinetics/pharmacodynamics of an interleukin-4 and interleukin-13 dual antagonist in asthma.J. Clin. Pharmacol.49 , 1025–1036 (2009).
  • Cheng G , ArimaM, HondaKet al.: Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model.Am. J. Respir. Crit. Care Med.166 , 409–416 (2002).
  • White B , LeonF, WhiteW, RobbieG: Two first-in-human, open-label, Phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers.Clin. Ther.31 , 728–740 (2009).
  • Bryan SA , O‘ConnorBJ, MattiS, et al.: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356 , 2149–2153 (2000).
  • Kim TS , DeKruyffRH, RupperR, MaeckerHT, LevyS, UmetsuDT: An ova-IL-12 fusion protein is more effective than OVA plus rIL-12 in inducing a Th1-dominated immune response and inhibiting antigen-specific IgE production.J. Immunol.158 , 4137–4144 (1997).
  • Leckie M , BrinkeA: Effects of an interleukin-5 blocking monoclonal antibody on eosinophils airway hyperresponsiveness, and the late asthmatic response.Lancet356 , 2144–2148 (2000).
  • Flood-Page P , SwensonC, FaifermanIet al.: International Mepolizumab Study Group. A study to evaluate the safety and efficacy of mepolizumab in patients with moderate persistent asthma.Am. J. Respir. Crit. Care Med.176 , 1062–1071 (2007).
  • Flood-Page P , Menzies-GowA, PhippsSet al.: Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics.J. Clin. Invest.112 , 1029–1036 (2003).
  • Bradding P , GreenRH: Subclinical phenotypes of asthma.Curr. Opin. Allergy Clin. Immunol.10 , 54–59 (2010).
  • Broide DH : Immunologic and inflammatory mechanisms that drive asthma progression to remodeling.J. Allergy Clin. Immunol.121 , 560–570 (2008).
  • Louten J , BonifaceK, de Waal Malefyt R: Development and function of Th17 cells in health and disease. J. Allergy Clin. Immunol.123 , 1004–1011 (2009).
  • Fouser LA , WrightJF, Dunussi-JoannopoulosK, CollinsM: Th17 cytokines and their emerging roles in inflammation and autoimmunity.Immunol. Rev.226 , 87–102 (2008).
  • Kawaguchi M , KokubuF, FujitaJ, HuangSK, HizawaN: Role of interleukin-17F in asthma.Inflamm. Allergy Drug Targets8 , 383–389 (2009).
  • He R , KimHY, YoonJet al.: Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13.J. Allergy Clin. Immunol.124 , 761–770 (2009).
  • Pollock KG , ConacherM, WeiXQ, AlexanderJ, BrewerJM: Interleukin-18 plays a role in both the alum-induced T helper 2 response and the T helper 1 response induced by alum-adsorbed interleukin-12.Immunology108 , 137–143 (2003).
  • Yamagata S , TomitaK, SatoR, NiwaA, HigashinoH, TohdaY: Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model.Clin. Exp. Immunol.154 , 295–304 (2008).
  • Walter DM , WongCP, DeKruyffRH, BerryGJ, LevyS, UmetsuDT: IL-18 gene transfer by adenovirus prevents the development of and reverses established allergen induced airway hyper reactivity.J. Immunol.166 , 6392–6398 (2001).
  • Maecker HT , HansenG, WalterDM, DeKruyffRH, LevyS, UmetsuDT: Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model.J. Immunol.166 , 959–965 (2001).
  • Harada M , ObaraK, HirotaTet al.: A functional polymorphism in IL-18 is associated with severity of bronchial asthma.Am. J. Respir. Crit. Care Med.180 , 1048–1055 (2009).
  • Rickel EA , SiegelLA, YoonBRet al.: Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities.J. Immunol.181 , 4299–4310 (2008).
  • Ballantyne SJ , BarlowJL, JolinHEet al.: Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma.J. Allergy Clin. Immunol.120 , 1324–1331 (2007).
  • Choi IW , Sun-Kim, Kim YS, Ko HM, et al.: TNF-α induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A(2) activation. J. Allergy Clin. Immunol.116 , 537–543 (2005).
  • Hutchison S , Choo-KangBS, BundickRV: Tumour necrosis factor-α blockade suppresses murine allergic airways inflammation.Clin. Exp. Immunol.151 , 114–122 (2008).
  • Kim YS , KoHM, KangNIet al.: Mast cells play a key role in the development of late airway hyperresponsiveness through TNF-α in a murine model of asthma.Eur. J. Immunol.37 , 1107–1115 (2007).
  • Thomas PS , YatesDH, BarnesPJ: Tumor necrosis factor a increases airway responsiveness and sputum neutrophilia in normal human subjects.Am. J. Respir. Crit. Care Med.152 , 76–80 (1995).
  • Thomas PS , HeywoodG: Effects of inhaled tumour necrosis factor-α in subjects with mild asthma.Thorax57 , 774–778 (2002).
  • Paulsson Y , AustgulenR, HofsliE, HeldinCH, WestermarkB, Nissen-MeyerJ: Tumor necrosis factor-induced expression of platelet-derived growth factor A-chain messenger RNA in fibroblasts.Exp. Cell Res.180 , 490–496 (1989).
  • Palombella VJ , MendelsohnJ, VilcekJ: Mitogenic action of tumor necrosis factor in human fibroblasts: interaction with epidermal growth factor and platelet-derived growth factor.J. Cell. Physiol.135 , 23–31 (1988).
  • Amrani Y , ChenH, PanettieriRA Jr: Activation of tumor necrosis factor receptor 1 in airway smooth muscle: a potential pathway that modulates bronchial hyper-responsiveness in asthma? Respir. Res.1 , 49–53 (2000).
  • Berry M , BrightlingC, AmraniY: Targeting TNF-α: a novel therapeutic approach for asthma.J. Allergy Clin. Immunol.121 , 5–10 (2008).
  • Howarth PH , BabuKS, ArshadHSet al.: Tumour necrosis factor (TNFα) as a novel therapeutic target in symptomatic corticosteroid dependent asthma.Thorax60 , 1012–1018 (2005).
  • Antoniu SA , MihaltanF, UlmeanuR: Anti-TNF-α therapies in chronic obstructive pulmonary diseases.Expert Opin. Investig. Drugs17 , 1203–1211 (2008).
  • Gjurow D , GrzelewskiT, SobocinskaA, StelmachI: Tumour necrosis factor inhibitors in pediatric asthma.Recent Pat. Inflamm. Allergy Drug Discov.3(2) , 143–148 (2009).
  • Wenzel SE , BarnesPJ, BleeckerERet al.: A randomized double-blind placebo controlled study of tumor necrosis factor-α blockade in severe persistent asthma.Am. J. Respir. Crit. Care Med.179 , 549–558 (2009).
  • Prussin C , GriffithDT, BoeselKM, LinH, FosterB, CasaleTB: Omalizumab treatment downregulates dendritic cell FcεRI expression.J. Allergy Clin. Immunol.112 , 1147–1154 (2003).
  • Kopp MV , BrauburgerJ, RiedingerFet al.: The effect of anti-IgE treatment on in vitro leukotriene release in children with seasonal allergic rhinitis.J. Allergy Clin. Immunol.110 , 728–735 (2002).
  • Djukanovi R , WilsonSJ, KraftMet al.: Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma.Am. J. Respir. Crit. Care Med.170 , 583–593 (2004).
  • Walker S , MonteilM, PhelanK, LassersonTJ, WaltersEH: Anti-IgE for chronic asthma in adults and children.Cochrane Database Syst. Rev.2 , CD003559 (2006).
  • Casale TB , BusseWW, KlineJNet al.: Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis.J. Allergy Clin. Immunol.117 , 134–140 (2006).
  • Cox LS : How safe are the biologicals in treating asthma and rhinitis?Allergy Asthma Clin. Immunol.22(5) , 4 (2009).
  • Gringeri A , MusiccoM, HermansPet al.: Active anti-interferon-α immunization: a European–Israeli, randomized, double-blind, placebo-controlled clinical trial in 242 HIV-1-infected patients (the EURIS study).J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.20 , 358–370 (1999).
  • Gonzalez G , CrombetT, CatalaMet al.: A novel cancer vaccine composed of human-recombinant epidermal growth factor linked to a carrier protein: report of a pilot clinical trial.Ann. Oncol.9 , 431–435 (1998).
  • Rohn TA , JenningsGT, HernandezMet al.: Vaccination against IL-17 suppresses autoimmune arthritis and encephalomyelitis.Eur. J. Immunol.36 , 2857–2867 (2006).
  • Uyttenhove C , ArendseB, StroobantV, BrombacherF, Van Snick J: Development of an anti-IL-12 p40 auto-vaccine: protection in experimental autoimmune encephalomyelitis at the expense of increased sensitivity to infection. Eur. J. Immunol.34 , 3572–3581 (2004).
  • Uyttenhove C , Van Snick J: Development of an anti-IL-17A auto-vaccine that prevents experimental auto-immune encephalomyelitis. Eur. J. Immunol.36 , 2868–2874 (2006).
  • Ma Y , HayglassKT, BeckerABet al.: Novel cytokine peptide-based vaccines: an interleukin-4 vaccine suppresses airway allergic responses in mice.Allergy62 , 675–682 (2007).
  • Zuany-Amorim C , ManliusC, DalumIet al.: Induction of TNF-α autoantibody production by AutoVac TNF106: a novel therapeutic approach for the treatment of allergic diseases.Int. Arch. Allergy Immunol.133 , 154–163 (2004).
  • Ma Y , HayGlassKT, BeckerABet al.: Novel recombinant interleukin-13 peptide-based vaccine reduces airway allergic inflammatory responses in mice.Am. J. Respir. Crit. Care Med.176 , 439–445 (2007).
  • Bischoff SC : Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data.Nat. Rev. Immunol.7(2) , 93–104 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.