214
Views
0
CrossRef citations to date
0
Altmetric
Review

Vaccines and Immunotherapeutics for the Prevention and Treatment of Infections with West Nile Virus

Pages 269-285 | Published online: 15 Feb 2011

Bibliography

  • Lindsey NP , StaplesJE, LehmanJA, FischerM: Surveillance for human West Nile virus disease – United States, 1999–2008.MMWR Surveill. Summ.59(2) , 1–17 (2010).
  • Chowers MY , GreenMS, BinH et al.: Postepidemic serosurvey of West Nile fever in Israel.Eur. J. Clin. Microbiol. Infect. Dis.24(12) , 851–853 (2005).
  • Mostashari F , BunningML, KitsutaniPT et al.: Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey.Lancet358(9278) , 261–264 (2001).
  • Zohrabian A , HayesEB, PetersenLR: Cost–effectiveness of West Nile virus vaccination.Emerg. Infect. Dis.12(3) , 375–380 (2006).
  • Martina BE , KorakaP, OsterhausAD: West Nile virus: is a vaccine needed?Curr. Opin. Investig. Drugs11(2) , 139–146 (2010).
  • Petersen LR , RoehrigJT: Flavivirus DNA vaccines – good science, uncertain future.J. Infect. Dis.196(12) , 1721–1723 (2007).
  • Diamond MS : Progress on the development of therapeutics against West Nile virus.Antiviral Res.83(3) , 214–227 (2009).
  • Widman DG , FrolovI, MasonPW: Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses.Adv. Virus Res.72 , 77–126 (2008).
  • Throsby M , Ter Meulen J, Geuijen C, Goudsmit J, de Kruif J: Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development. Expert Rev. Vaccines6(2) , 183–191 (2007).
  • Dauphin G , ZientaraS: West Nile virus: recent trends in diagnosis and vaccine development.Vaccine25(30) , 5563–5576 (2007).
  • Sampath A , PadmanabhanR: Molecular targets for flavivirus drug discovery.Antiviral Res.81(1) , 6–15 (2009).
  • Diamond MS : Virus and host determinants of West Nile virus pathogenesis.PLoS Pathog.5(6) , E1000452 (2009).
  • Diamond MS , MehlhopE, OliphantT, SamuelMA: The host immunologic response to West Nile encephalitis virus.Front. Biosci.14 , 3024–3034 (2009).
  • Klein RS , DiamondMS: Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus.Trends Mol. Med.14(7) , 286–294 (2008).
  • Davis LE , DeBiasiR, GoadeDE et al.: West Nile virus neuroinvasive disease.Ann. Neurol.60(3) , 286–300 (2006).
  • Gyure KA : West Nile virus infections.J. Neuropathol. Exp. Neurol.68(10) , 1053–1060 (2009).
  • Mukhopadhyay S , KimBS, ChipmanPR, RossmannMG, KuhnRJ: Structure of West Nile virus.Science302(5643) , 248 (2003).
  • Brinton MA : The molecular biology of West Nile virus: a new invader of the western hemisphere.Annu. Rev. Microbiol.56 , 371–402 (2002).
  • Chappell KJ , StoermerMJ, FairlieDP, YoungPR: West Nile virus NS2B/NS3 protease as an antiviral target.Curr. Med. Chem.15(27) , 2771–2784 (2008).
  • Edgil D , HarrisE: End-to-end communication in the modulation of translation by mammalian RNA viruses.Virus Res.119(1) , 43–51 (2006).
  • Lanciotti RS , EbelGD, DeubelV et al.: Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East.Virology298(1) , 96–105 (2002).
  • Lanciotti RS , RoehrigJT, DeubelV et al.: Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States.Science286(5448) , 2333–2337 (1999).
  • Jia XY , BrieseT, JordanI et al.: Genetic analysis of West Nile New York 1999 encephalitis virus.Lancet354(9194) , 1971–1972 (1999).
  • Bakonyi T , IvanicsE, ErdelyiK et al.: Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe.Emerg. Infect. Dis.12(4) , 618–623 (2006).
  • Erdelyi K , UrsuK, FerencziE et al.: Clinical and pathologic features of lineage 2 West Nile virus infections in birds of prey in Hungary.Vector Borne Zoonotic Dis.7(2) , 181–188 (2007).
  • Outbreak of West Nile virus infection in Greece, July–August 2010. ECDC Threat Assessment, European Centre for Disease Prevention and Control, Sweden (2010).
  • Venter M , HumanS, ZaaymanD et al.: Lineage 2 West Nile virus as cause of fatal neurologic disease in horses, South Africa.Emerg. Infect. Dis.15(6) , 877–884 (2009).
  • Venter M , SteylJ, HumanS et al.: Transmission of West Nile virus during horse autopsy.Emerg. Infect. Dis.16(3) , 573–575 (2010).
  • Venter M , SwanepoelR: West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa.Vector Borne Zoonotic Dis.10(7) , 659–664 (2010).
  • Beasley DW , LiL, SudermanMT, BarrettAD: Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype.Virology296(1) , 17–23 (2002).
  • Bakonyi T , HubalekZ, RudolfI, NowotnyN: Novel flavivirus or new lineage of West Nile virus, central Europe.Emerg. Infect. Dis.11(2) , 225–231 (2005).
  • Bondre VP , JadiRS, MishraAC, YergolkarPN, ArankalleVA: West Nile virus isolates from India: evidence for a distinct genetic lineage.J. Gen. Virol.88(Pt 3) , 875–884 (2007).
  • Blackburn NK , ThompsonDL, JuppPG: Antigenic relationship of West Nile strains by titre ratios calculated from cross-neutralization test results.Epidemiol. Infect.99(2) , 551–557 (1987).
  • Li L , BarrettAD, BeasleyDW: Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains.Virology335(1) , 99–105 (2005).
  • Allain JP , StramerSL, Carneiro-ProiettiAB et al.: Transfusion-transmitted infectious diseases.Biologicals37(2) , 71–77 (2009).
  • Hinckley AF , O‘LearyDR, HayesEB: Transmission of West Nile virus through human breast milk seems to be rare.Pediatrics119(3) , E666–E671 (2007).
  • Centers for Disease Control and Prevention: Interim guidelines for the evaluation of infants born to mothers infected with West Nile virus during pregnancy. MMWR Morb. Mortal. Wkly Rep.53(7) , 154–157 (2004).
  • Laboratory-acquired West Nile virus infections – United States, 2002. MMWR Morb. Mortal. Wkly Rep.51(50) , 1133–1135 (2002).
  • Klee AL , MaidinB, EdwinB et al.: Long-term prognosis for clinical West Nile virus infection.Emerg. Infect. Dis.10(8) , 1405–1411 (2004).
  • Sadek JR , PergamSA, HarringtonJA et al.: Persistent neuropsychological impairment associated with West Nile virus infection.J. Clin. Exp. Neuropsychol.1–8 (2009).
  • Sejvar JJ , CurnsAT, WelburgL et al.: Neurocognitive and functional outcomes in persons recovering from West Nile virus illness.J. Neuropsychol.2(Pt 2) , 477–499 (2008).
  • Carson PJ , KonewkoP, WoldKS et al.: Long-term clinical and neuropsychological outcomes of West Nile virus infection.Clin. Infect. Dis.43(6) , 723–730 (2006).
  • Murray K , WalkerC, HerringtonE et al.: Persistent infection with West Nile virus years after initial infection.J. Infect. Dis.201(1) , 2–4 (2010).
  • Georges AJ , LesbordesJL, Georges-CourbotMC, MeunierDMY, GonzalezJP: Fatal hepatitis from West Nile virus.Ann. Inst. Pasteur. Virol.138 , 237–244 (1987).
  • Paddock CD , NicholsonWL, BhatnagarJ et al.: Fatal hemorrhagic fever caused by West Nile virus in the United States.Clin. Infect. Dis.42(11) , 1527–1535 (2006).
  • Markoff L : Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines.Vaccine18(Suppl. 2) , 26–32 (2000).
  • Amanna IJ , MessaoudiI, SlifkaMK: Protective immunity following vaccination: how is it defined?Hum. Vaccin.4(4) , 316–319 (2008).
  • Hombach J , CardosaMJ, SabchareonA, VaughnDW, BarrettAD: Scientific consultation on immunological correlates of protection induced by dengue vaccines report from a meeting held at the World Health Organization 17–18 November 2005.Vaccine25(21) , 4130–4139 (2007).
  • Rey FA , HeinzFX, MandlC, KunzC, HarrisonSC: The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution.Nature375(6529) , 291–298 (1995).
  • Nybakken GE , NelsonCA, ChenBR, DiamondMS, FremontDH: Crystal structure of the West Nile virus envelope glycoprotein.J. Virol.80(23) , 11467–11474 (2006).
  • Roehrig JT : Antigenic structure of flavivirus proteins.Adv. Virus Res.59 , 141–175 (2003).
  • Throsby M , GeuijenC, GoudsmitJ et al.: Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus.J. Virol.80(14) , 6982–6992 (2006).
  • Oliphant T , NybakkenGE, AustinSK et al.: Induction of epitope-specific neutralizing antibodies against West Nile virus.J. Virol.81(21) , 11828–11839 (2007).
  • Wahala WM , KrausAA, HaymoreLB, Accavitti-LoperMA, de Silva AM: Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology392(1) , 103–113 (2009).
  • Guy B , BarbanV, MantelN et al.: Evaluation of interferences between dengue vaccine serotypes in a monkey model.Am. J. Trop. Med. Hyg.80(2) , 302–311 (2009).
  • Schlesinger JJ , BrandrissMW, WalshEE: Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48.J. Immunol.135(4) , 2805–2809 (1985).
  • Engle MJ , DiamondMS: Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice.J. Virol.77(24) , 12941–12949 (2003).
  • Roehrig JT , StaudingerLA, HuntAR, MathewsJH, BlairCD: Antibody prophylaxis and therapy for flavivirus encephalitis infections.Ann. NY Acad. Sci.951 , 286–297 (2001).
  • Kimura-Kuroda J , YasuiK: Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies.J. Immunol.141(10) , 3606–3610 (1988).
  • Chung KM , NybakkenGE, ThompsonBS et al.: Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through Fc γ receptor-dependent and -independent mechanisms.J. Virol.80(3) , 1340–1351 (2006).
  • Shiryaev SA , RadichevIA, RatnikovBI et al.: Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B–NS3 proteinase of West Nile virus.Biochem. J.427(3) , 369–376 (2010).
  • Thomas S , RedfernJB, LidburyBA, MahalingamS: Antibody-dependent enhancement and vaccine development.Expert Rev. Vaccines5(4) , 409–412 (2006).
  • Pierson TC , XuQ, NelsonS et al.: The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection.Cell Host Microbe1(2) , 135–145 (2007).
  • Halstead SB : Neutralization and antibody-dependent enhancement of dengue viruses.Adv. Virus Res.60 , 421–467 (2003).
  • Broker M , KollaritschH: After a tick bite in a tick-borne encephalitis virus endemic area: current positions about postexposure treatment.Vaccine26(7) , 863–868 (2008).
  • Goncalvez AP , EngleRE, St Claire M, Purcell RH, Lai CJ: Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl Acad. Sci. USA104(22) , 9422–9427 (2007).
  • Balsitis SJ , WilliamsKL, LachicaR et al.: Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification.PLoS Pathog.6(2) , E1000790 (2010).
  • Hamdan A , GreenP, MendelsonE, KramerMR, PitlikS, WeinbergerM: Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis.Transpl. Infect. Dis.4(3) , 160–162 (2002).
  • Rager-Zisman B , Ben Nathan D: Efficacy of prophylactic and therapeutic human immunoglobulin on West Nile virus infection. Isr. Med. Assoc. J.5(10) , 691 (2003).
  • Shimoni Z , NivenMJ, PitlickS, BulvikS: Treatment of West Nile virus encephalitis with intravenous immunoglobulin.Emerg. Infect. Dis.7(4) , 759 (2001).
  • Planitzer CB , ModrofJ, KreilTR: West Nile virus neutralization by US plasma-derived immunoglobulin products.J. Infect. Dis.196(3) , 435–440 (2007).
  • Ben-Nathan D , Gershoni-YahalomO, SaminaI et al.: Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection.BMC Infect. Dis.9 , 18 (2009).
  • Saquib R , RandallH, ChandrakantanA, SpakCW, BarriYM: West Nile virus encephalitis in a renal transplant recipient: the role of intravenous immunoglobulin.Am. J. Kidney Dis.52(5) , E19–E21 (2008).
  • Makhoul B , BraunE, HerskovitzM, RamadanR, HadadS, NorbertoK: Hyperimmune γ-globulin for the treatment of West Nile virus encephalitis.Isr. Med. Assoc. J.11(3) , 151–153 (2009).
  • Haley M , RetterAS, FowlerD, Gea-BanaclocheJ, O‘GradyNP: The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis.Clin. Infect. Dis.37(6) , e88–90 (2003).
  • Penn RG , GuarnerJ, SejvarJJ et al.: Persistent neuroinvasive West Nile virus infection in an immunocompromised patient.Clin. Infect. Dis.42(5) , 680–683 (2006).
  • Levi ME , QuanD, HoJT, Kleinschmidt-DemastersBK, TylerKL, GraziaTJ: Impact of rituximab-associated B-cell defects on West Nile virus meningoencephalitis in solid organ transplant recipients.Clin. Transplant24(2) , 223–228 (2010).
  • Oliphant T , EngleM, NybakkenGE et al.: Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus.Nat. Med.11(5) , 522–530 (2005).
  • Morrey JD , SiddharthanV, OlsenAL et al.: Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters.J. Infect. Dis.194(9) , 1300–1308 (2006).
  • Morrey JD , SiddharthanV, OlsenAL et al.: Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model.Antimicrob. Agents Chemother.51(7) , 2396–2402 (2007).
  • Sultana H , FoellmerHG, NeelakantaG et al.: Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody.J. Immunol.183(1) , 650–660 (2009).
  • Vogt MR , MoeskerB, GoudsmitJ et al.: Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step.J. Virol.83(13) , 6494–6507 (2009).
  • Ledizet M , KarK, FoellmerHG et al.: Antibodies targeting linear determinants of the envelope protein protect mice against West Nile virus.J. Infect. Dis.196(12) , 1741–1748 (2007).
  • Gould LH , SuiJ, FoellmerH et al.: Protective and therapeutic capacity of human single-chain Fv–Fc fusion proteins against West Nile virus.J. Virol.79(23) , 14606–14613 (2005).
  • Beigel JH , NordstromJL, PillemerSR et al.: Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus.Antimicrob. Agents Chemother.54(6) , 2431–2436 (2010).
  • Lai H , EngleM, FuchsA et al.: Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice.Proc. Natl Acad. Sci. USA107(6) , 2419–2424 (2010).
  • Pereboev A , BorisevichV, TsuladzeG et al.: Genetically delivered antibody protects against West Nile virus.Antiviral Res.77(1) , 6–13 (2008).
  • Beasley DW , BarrettAD: Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein.J. Virol.76(24) , 13097–13100 (2002).
  • Zhang S , VogtMR, OliphantT et al.: Development of resistance to passive therapy with a potently neutralizing humanized monoclonal antibody against West Nile virus.J. Infect. Dis.200(2) , 202–205 (2009).
  • Ng T , HathawayD, JenningsN, ChampD, ChiangYW, ChuHJ: Equine vaccine for West Nile virus.Dev. Biol. (Basel)114 , 221–227 (2003).
  • ElGarch H , MinkeJM, RehderJ et al.: A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse.Vet. Immunol. Immunopathol.123(3–4) , 230–239 (2008).
  • Guy B , GuirakhooF, BarbanV, HiggsS, MonathTP, LangJ: Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses.Vaccine28(3) , 632–649 (2010).
  • Davis BS , ChangGJ, CroppB et al.: West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays.J. Virol.75(9) , 4040–4047 (2001).
  • Monath TP , LiuJ, Kanesa-ThasanN et al.: A live, attenuated recombinant West Nile virus vaccine.Proc. Natl Acad. Sci. USA103(17) , 6694–6699 (2006).
  • Pletnev AG , SwayneDE, SpeicherJ, RumyantsevAA, MurphyBR: Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity.Vaccine24(40–41) , 6392–6404 (2006).
  • Martin JE , PiersonTC, HubkaS et al.: A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a Phase I clinical trial.J. Infect. Dis.196(12) , 1732–1740 (2007).
  • Lieberman MM , ClementsDE, OgataS et al.: Preparation and immunogenic properties of a recombinant West Nile subunit vaccine.Vaccine25(3) , 414–423 (2007).
  • Lieberman MM , NerurkarVR, LuoH et al.: Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys.Clin. Vaccine Immunol.16(9) , 1332–1337 (2009).
  • Kanesa-Thasan N , PutnakJR, MangiaficoJA, SaluzzoJE, LudwigGV: Short report: absence of protective neutralizng antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines.Am. J. Trop. Med. Hyg.66(2) , 115–116 (2002).
  • Tang F , ZhangJS, LiuW et al.: Failure of Japanese encephalitis vaccine and infection in inducing neutralizing antibodies against West Nile virus, People‘s Republic of China.Am. J. Trop. Med. Hyg.78(6) , 999–1001 (2008).
  • Yamshchikov G , BorisevichV, KwokCW et al.: The suitability of yellow fever and Japanese encephalitis vaccines for immunization against West Nile virus.Vaccine23(39) , 4785–4792 (2005).
  • Nemeth NM , Bosco-LauthAM, BowenRA: Cross-protection between West Nile and Japanese encephalitis viruses in red-winged blackbirds (Agelaius phoeniceus).Avian Dis.53(3) , 421–425 (2009).
  • Ishikawa T , WidmanDG, BourneN, KonishiE, MasonPW: Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis.Vaccine26(22) , 2772–2781 (2008).
  • Fang Y , ReisenWK: Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches.Am. J. Trop. Med. Hyg.75(3) , 480–485 (2006).
  • Goverdhan MK , KulkarniAB, GuptaAK, TupeCD, RodriguesJJ: Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques.Acta Virol.36(3) , 277–283 (1992).
  • Malkinson M , BanetC, KhinichY, SaminaI, PokamunskiS, WeismanY: Use of live and inactivated vaccines in the control of West Nile fever in domestic geese.Ann. NY Acad. Sci.951 , 255–261 (2001).
  • Takasaki T , YabeS, NeromeR, ItoM, YamadaK, KuraneI: Partial protective effect of inactivated Japanese encephalitis vaccine on lethal West Nile virus infection in mice.Vaccine21(31) , 4514–4518 (2003).
  • Lim CK , TakasakiT, KotakiA, KuraneI: Vero cell-derived inactivated West Nile (WN) vaccine induces protective immunity against lethal WN virus infection in mice and shows a facilitated neutralizing antibody response in mice previously immunized with Japanese encephalitis vaccine.Virology374(1) , 60–70 (2008).
  • Gubler DJ : The continuing spread of West Nile virus in the western hemisphere.Clin. Infect. Dis.45(8) , 1039–1046 (2007).
  • Lobigs M , LarenaM, AlsharifiM, LeeE, PavyM: Live chimeric and inactivated Japanese encephalitis virus vaccines differ in their cross-protective values against Murray Valley encephalitis virus.J. Virol.83(6) , 2436–2445 (2009).
  • Lobigs M , PavyM, HallR: Cross-protective and infection-enhancing immunity in mice vaccinated against flaviviruses belonging to the Japanese encephalitis virus serocomplex.Vaccine21(15) , 1572–1579 (2003).
  • Shrestha B , DiamondMS: Role of CD8+ T cells in control of West Nile virus infection.J. Virol.78(15) , 8312–8321 (2004).
  • McMurtrey CP , LelicA, PiazzaP et al.: Epitope discovery in West Nile virus infection: identification and immune recognition of viral epitopes.Proc. Natl Acad. Sci. USA105(8) , 2981–2986 (2008).
  • Kim S , LiL, McMurtreyCP et al.: Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T-cell immunity against lethal West Nile virus infection.J. Immunol.184(8) , 4423–4430 (2010).
  • Seino KK , LongMT, GibbsEP et al.: Comparative efficacies of three commercially available vaccines against West Nile virus (WNV) in a short-duration challenge trial involving an equine WNV encephalitis model.Clin. Vaccine Immunol.14(11) , 1465–1471 (2007).
  • Shrestha B , NgT, ChuHJ, NollM, DiamondMS: The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus.Vaccine26(16) , 2020–2033 (2008).
  • Samina I , KhinichY, SimanovM, MalkinsonM: An inactivated West Nile virus vaccine for domestic geese-efficacy study and a summary of 4 years of field application.Vaccine23(41) , 4955–4958 (2005).
  • Samina I , HavengaM, KoudstaalW et al.: Safety and efficacy in geese of a PER.C6-based inactivated West Nile virus vaccine.Vaccine25(49) , 8338–8345 (2007).
  • Orlinger KK , HolzerGW, SchwaigerJ et al.: An inactivated West Nile virus vaccine derived from a chemically synthesized cDNA system.Vaccine28(19) , 3318–3324 (2010).
  • Kinney RM , HuangCY, WhitemanMC et al.: Avian virulence and thermostable replication of the North American strain of West Nile virus.J. Gen. Virol.87(Pt 12) , 3611–3622 (2006).
  • Qiao M , AshokM, BernardKA et al.: Induction of sterilizing immunity against West Nile virus (WNV), by immunization with WNV-like particles produced in insect cells.J. Infect. Dis.190(12) , 2104–2108 (2004).
  • Siirin MT , Travassos da Rosa AP, Newman P et al.: Evaluation of the efficacy of a recombinant subunit West Nile vaccine in Syrian golden hamsters. Am. J. Trop. Med. Hyg.79(6) , 955–962 (2008).
  • Watts DM , TeshRB, SiirinM et al.: Efficacy and durability of a recombinant subunit West Nile vaccine candidate in protecting hamsters from West Nile encephalitis.Vaccine25(15) , 2913–2918 (2007).
  • Fassbinder-Orth CA , HofmeisterEK, Weeks-LevyC, KarasovWH: Oral and parenteral immunization of chickens (Gallus gallus) against West Nile virus with recombinant envelope protein.Avian Dis.53(4) , 502–509 (2009).
  • Jarvi SI , LiebermanMM, HofmeisterE, NerurkarVR, WongT, Weeks-LevyC: Protective efficacy of a recombinant subunit West Nile virus vaccine in domestic geese (Anser anser).Vaccine26(42) , 5338–5344 (2008).
  • Ledizet M , KarK, FoellmerHG et al.: A recombinant envelope protein vaccine against West Nile virus.Vaccine23(30) , 3915–3924 (2005).
  • Bonafe N , RiningerJA, ChubetRG et al.: A recombinant West Nile virus envelope protein vaccine candidate produced in Spodoptera frugiperda expresSF+ cells.Vaccine27(2) , 213–222 (2009).
  • Demento SL , EisenbarthSC, FoellmerHG et al.: Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy.Vaccine27(23) , 3013–3021 (2009).
  • Chu JH , ChiangCC, NgML: Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection.J. Immunol.178(5) , 2699–2705 (2007).
  • McDonald WF , HuleattJW, FoellmerHG et al.: A West Nile virus recombinant protein vaccine that coactivates innate and adaptive immunity.J. Infect. Dis.195(11) , 1607–1617 (2007).
  • Gershoni-Yahalom O , LandesS, Kleiman-ShovalS et al.: Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge.Immunology (2010).
  • Choi KS , NahJJ, KoYJ, KimYJ, JooYS: The DE loop of the domain III of the envelope protein appears to be associated with West Nile virus neutralization.Virus Res.123(2) , 216–218 (2007).
  • Mason PW , ShustovAV, FrolovI: Production and characterization of vaccines based on flaviviruses defective in replication.Virology351(2) , 432–443 (2006).
  • Widman DG , IshikawaT, WinkelmannER, InfanteE, BourneN, MasonPW: RepliVAX WN, a single-cycle flavivirus vaccine to prevent West Nile disease, elicits durable protective immunity in hamsters.Vaccine27(41) , 5550–5553 (2009).
  • Widman DG , IshikawaT, GiavedoniLD et al.: Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a nonhuman primate model of West Nile virus infection.Am. J. Trop. Med. Hyg.82(6) , 1160–1167 (2010).
  • Suzuki R , FayzulinR, FrolovI, MasonPW: Identification of mutated cyclization sequences that permit efficient replication of West Nile virus genomes: use in safer propagation of a novel vaccine candidate.J. Virol.82(14) , 6942–6951 (2008).
  • Bunning ML , FoxPE, BowenRA et al.: DNA vaccination of the American crow (Corvus brachyrhynchos) provides partial protection against lethal challenge with West Nile virus.Avian Dis.51(2) , 573–577 (2007).
  • Chang GJ , DavisBS, StringfieldC, LutzC: Prospective immunization of the endangered California condors (Gymnogyps californianus) protects this species from lethal West Nile virus infection.Vaccine25(12) , 2325–2330 (2007).
  • Turell MJ , BunningM, LudwigGV et al.: DNA vaccine for West Nile virus infection in fish crows (Corvus ossifragus).Emerg. Infect. Dis.9(9) , 1077–1081 (2003).
  • Martin JE , PiersonTC, GrahamBS: Reply to Rottinghaus and Poland.J. Infect. Dis.197(11) , 1628–1629 (2008).
  • Ishikawa T , TakasakiT, KuraneI, NukuzumaS, KondoT, KonishiE: Coimmunization with West Nile DNA and inactivated vaccines provides synergistic increases in their immunogenicities in mice.Microbes Infect.9(9) , 1089–1095 (2007).
  • Ramanathan MP , KutzlerMA, KuoYC et al.: Coimmunization with an optimized IL15 plasmid adjuvant enhances humoral immunity via stimulating B cells induced by genetically engineered DNA vaccines expressing consensus JEV and WNV E DIII.Vaccine27(32) , 4370–4380 (2009).
  • Bellier B , HuretC, MiyalouM et al.: DNA vaccines expressing retrovirus-like particles are efficient immunogens to induce neutralizing antibodies.Vaccine27(42) , 5772–5780 (2009).
  • Seregin A , NistlerR, BorisevichV et al.: Immunogenicity of West Nile virus infectious DNA and its noninfectious derivatives.Virology356(1–2) , 115–125 (2006).
  • Hall RA , NisbetDJ, PhamKB, PykeAT, SmithGA, KhromykhAA: DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus.Proc. Natl Acad. Sci. USA100(18) , 10460–10464 (2003).
  • Chang DC , LiuWJ, AnrakuI et al.: Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus.Nat. Biotechnol.26(5) , 571–577 (2008).
  • Anwar A , ChandrasekaranA, NgML, MarquesE, AugustJT: West Nile premembrane-envelope genetic vaccine encoded as a chimera containing the transmembrane and cytoplasmic domains of a lysosome-associated membrane protein: increased cellular concentration of the transgene product, targeting to the MHC II compartment, and enhanced neutralizing antibody response.Virology332(1) , 66–77 (2005).
  • Dhalia R , MacielM Jr, Cruz FS et al.: Membrane and envelope virus proteins coexpressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses. An. Acad. Bras. Cienc.81(4) , 663–669 (2009).
  • Minke JM , SigerL, KaracaK et al.: Recombinant canarypox virus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge.Arch. Virol. Suppl.18 , 221–230 (2004).
  • Karaca K , BowenR, AustgenLE et al.: Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge.Vaccine23(29) , 3808–3813 (2005).
  • Rosas CT , TischerBK, PerkinsGA, WagnerB, GoodmanLB, OsterriederN: Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV).Virus Res.125(1) , 69–78 (2007).
  • Iyer AV , PaharB, BoudreauxMJ et al.: Recombinant vesicular stomatitis virus-based West Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent West Nile virus strain LSU-AR01.Vaccine27(6) , 893–903 (2009).
  • Despres P , CombredetC, FrenkielMP, LorinC, BrahicM, TangyF: Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis.J. Infect. Dis.191(2) , 207–214 (2005).
  • Iglesias MC , FrenkielMP, MollierK, SouqueP, DespresP, CharneauP: A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus.J. Gene Med.8(3) , 265–274 (2006).
  • Coutant F , FrenkielMP, DespresP, CharneauP: Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine.PLoS One3(12) , E3973 (2008).
  • Schepp-Berglind J , LuoM, WangD et al.: Complex adenovirus-mediated expression of West Nile virus C, PreM, E, and NS1 proteins induces both humoral and cellular immune responses.Clin. Vaccine Immunol.14(9) , 1117–1126 (2007).
  • Arroyo J , MillerC, CatalanJ et al.: ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy.J. Virol.78(22) , 12497–12507 (2004).
  • Long MT , GibbsEP, MellencampMW et al.: Efficacy, duration, and onset of immunogenicity of a West Nile virus vaccine, live flavivirus chimera, in horses with a clinical disease challenge model.Equine Vet. J.39(6) , 491–497 (2007).
  • Langevin SA , ArroyoJ, MonathTP, KomarN: Host-range restriction of chimeric yellow fever–West Nile vaccine in fish crows (Corvus ossifragus).Am. J. Trop. Med. Hyg.69(1) , 78–80 (2003).
  • Johnson BW , ChambersTV, CrabtreeMB, ArroyoJ, MonathTP, MillerBR: Growth characteristics of the veterinary vaccine candidate ChimeriVax-West Nile (WN) virus in Aedes and Culex mosquitoes.Med. Vet. Entomol.17(3) , 235–243 (2003).
  • Pletnev AG , ClaireMS, ElkinsR, SpeicherJ, MurphyBR, ChanockRM: Molecularly engineered live-attenuated chimeric West Nile/dengue virus vaccines protect rhesus monkeys from West Nile virus.Virology314(1) , 190–195 (2003).
  • Pletnev AG , PutnakR, SpeicherJ, WagarEJ, VaughnDW: West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy.Proc. Natl Acad. Sci. USA99(5) , 3036–3041 (2002).
  • Hanley KA , GoddardLB, GilmoreLE et al.: Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors.Vector Borne Zoonotic Dis.5(1) , 1–10 (2005).
  • Huang CY , SilengoSJ, WhitemanMC, KinneyRM: Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus.J. Virol.79(12) , 7300–7310 (2005).
  • Yamshchikov G , BorisevichV, SereginA et al.: An attenuated West Nile prototype virus is highly immunogenic and protects against the deadly NY99 strain: a candidate for live WN vaccine development.Virology330(1) , 304–312 (2004).
  • Whiteman MC , LiL, WickerJA et al.: Development and characterization of nonglycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus.Vaccine28(4) , 1075–1083 (2010).
  • Yu L , Robert Putnak J, Pletnev AG, Markoff L: Attenuated West Nile viruses bearing 3´SL and envelope gene substitution mutations. Vaccine26(47) , 5981–5988 (2008).
  • Liu WJ , WangXJ, ClarkDC, LobigsM, HallRA, KhromykhAA: A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit α/β interferon induction and attenuates virus virulence in mice.J. Virol.80(5) , 2396–2404 (2006).
  • Wicker JA , WhitemanMC, BeasleyDW et al.: A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice.Virology349(2) , 245–253 (2006).
  • Terakawa N , MatsuiY, SatoiS et al.: Immunological effect of active hexose correlated compound (AHCC) in healthy volunteers: a double-blind, placebo-controlled trial.Nutr. Cancer60(5) , 643–651 (2008).
  • Wang S , WelteT, FangH et al.: Oral administration of active hexose correlated compound enhances host resistance to West Nile encephalitis in mice.J. Nutr.139(3) , 598–602 (2009).
  • Yang X , WangH, BeasleyDW et al.: Selection of thioaptamers for diagnostics and therapeutics.Ann. NY Acad. Sci.1082 , 116–119 (2006).
  • Fennewald SM , ScottEP, ZhangL et al.: Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections.J. Gen. Virol.88(Pt 3) , 981–990 (2007).
  • Planitzer CB , ModrofJ, YuMY, KreilTR: West Nile virus infection in plasma of blood and plasma donors, United States.Emerg. Infect. Dis.15(10) , 1668–1670 (2009).
  • Busch MP , WrightDJ, CusterB et al.: West Nile virus infections projected from blood donor screening data, United States, 2003.Emerg. Infect. Dis.12(3) , 395–402 (2006).
  • Schellenberg TL , AndersonME, DrebotMA et al.: Seroprevalence of West Nile virus in Saskatchewan‘s Five Hills Health Region, 2003.Can. J. Public Health97(5) , 369–373 (2006).
  • Tonjes DJ : Estimates of worst case baseline West Nile virus disease effects in a suburban New York county.J. Vector Ecol.33(2) , 293–304 (2008).
  • Brault AC : Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility.Vet. Res.40(2) , 43 (2009).
  • Davis CT , BeasleyDW, GuzmanH et al.: Emergence of attenuated West Nile virus variants in Texas, 2003.Virology330(1) , 342–350 (2004).
  • Beasley DW , DavisCT, Estrada-FrancoJ et al.: Genome sequence and attenuating mutations in West Nile virus isolate from Mexico.Emerg. Infect. Dis.10(12) , 2221–2224 (2004).
  • Ruiz MO , ChavesLF, HamerGL et al.: Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA.Parasit. Vectors3(1) , 19 (2010).
  • Wang G , MinnisRB, BelantJL, WaxCL: Dry weather induces outbreaks of human West Nile virus infections.BMC Infect. Dis.10 , 38 (2010).
  • Weinhold B : Rainy day reaction: human West Nile viruses cases respond to weather patterns.Environ. Health Perspect.117(7) , A311 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.