161
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic Potential of Vaccines for Alzheimer‘s Disease

&
Pages 287-298 | Published online: 15 Feb 2011

Bibliography

  • Lemere CA , MasliahE: Can Alzheimer disease be prevented by amyloid-β immunotherapy?Nat. Rev. Neurol.6(4) , 108 (2010).
  • Hardy J , SelkoeDJ: The amyloid hypothesis of Alzheimer‘s disease: progress and problems on the road to therapeutics.Science297(5580) , 353–356 (2002).
  • Duyckaerts C , HauwJJ: Prevalence, incidence and duration of Braak‘s stages in the general population: can we know?Neurobiol. Aging18(4) , 362–369; discussion 389–392 (1997).
  • Ribe EM , PerezM, PuigB et al.: Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/Tau transgenic mice.Neurobiol. Dis.20(3) , 814–822 (2005).
  • Lemere CA , BlusztajnJK, YamaguchiH, WisniewskiT, SaidoTC, SelkoeDJ: Sequence of deposition of heterogeneous amyloid β-peptides and apoE in down syndrome: implications for initial events in amyloid plaque formation.Neurobiol. Dis.3(1) , 16–32 (1996).
  • Elder GA , Gama Sosa MA, De Gasperi R: Transgenic mouse models of Alzheimer‘s disease. Mt Sinai J. Med.77(1) , 69–81 (2010).
  • Oddo S , CaccamoA, ShepherdJD et al.: Triple-transgenic model of Alzheimer‘s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction.Neuron39(3) , 409–421 (2003).
  • Ittner LM , KeYD, DelerueF et al.: Dendritic function of tau mediates amyloid-β toxicity in Alzheimer‘s disease mouse models.Cell142(3) , 387–397 (2010).
  • Eckert A , SchulzKL, RheinV, GotzJ: Convergence of amyloid-β and Tau pathologies on mitochondria in vivo.Mol. Neurobiol.41(2–3) , 107–114 (2010).
  • Mastrangelo MA , BowersWJ: Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer‘s disease-related pathologies in male triple-transgenic mice.BMC Neurosci.9 , 81 (2008).
  • Poling A , Morgan-PaisleyK, PanosJJ et al.: Oligomers of the amyloid-β protein disrupt working memory: confirmation with two behavioral procedures.Behav. Brain Res.193(2) , 230–234 (2008).
  • Schwab C , HosokawaM, McgeerPL: Transgenic mice overexpressing amyloid β protein are an incomplete model of Alzheimer disease.Exp. Neurol.188(1) , 52–64 (2004).
  • Tan ZS , BeiserAS, VasanRS et al.: Inflammatory markers and the risk of Alzheimer disease: the Framingham study.Neurology68(22) , 1902–1908 (2007).
  • Lambert JC , HeathS, EvenG et al.: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer‘s disease.Nat. Genet.41(10) , 1094–1099 (2009).
  • Aisen PS , SchaferKA, GrundmanM et al.: Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial.JAMA289(21) , 2819–2826 (2003).
  • Lyketsos CG , BreitnerJC, GreenRC et al.: Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial.Neurology68(21) , 1800–1808 (2007).
  • Haass C , SchlossmacherMG, HungAY et al.: Amyloid β-peptide is produced by cultured cells during normal metabolism.Nature359(6393) , 322–325 (1992).
  • Seubert P , Vigo-PelfreyC, EschF et al.: Isolation and quantification of soluble Alzheimer‘s β-peptide from biological fluids.Nature359(6393) , 325–327 (1992).
  • Sinha S , AndersonJP, BarbourR et al.: Purification and cloning of amyloid precursor protein β-secretase from human brain.Nature402(6761) , 537–540 (1999).
  • Glenner GG , WongCW: Alzheimer‘s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.120(3) , 885–890 (1984).
  • Selkoe DJ : Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer‘s disease.Annu. Rev. Cell Biol.10 , 373–403 (1994).
  • Vassar R , BennettBD, Babu-KhanS et al.: β-secretase cleavage of Alzheimer‘s amyloid precursor protein by the transmembrane aspartic protease bace.Science286(5440) , 735–741 (1999).
  • Tanzi RE , BertramL: Twenty years of the Alzheimer‘s disease amyloid hypothesis: a genetic perspective.Cell120(4) , 545–555 (2005).
  • Sandbrink R , MastersCL, BeyreutherK: APP gene family. Alternative splicing generates functionally related isoforms.Ann. NY Acad. Sci.777 , 281–287 (1996).
  • Esler WP , WolfeMS: A portrait of Alzheimer secretases – new features and familiar faces.Science293(5534) , 1449–1454 (2001).
  • Nunan J , SmallDH: Regulation of APP cleavage by α-, β- and γ-secretases.FEBS Lett.483(1) , 6–10 (2000).
  • Gao Y , PimplikarSW: The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus.Proc. Natl Acad. Sci. USA98(26) , 14979–14984 (2001).
  • Dries DR , YuG: Assembly, maturation and trafficking of the γ-secretase complex in Alzheimer‘s disease.Curr. Alzheimer Res.5(2) , 132–146 (2008).
  • Mayeux R , HonigLS, TangMX et al.: Plasma Aβ40 and Aβ42 and Alzheimer‘s disease: relation to age, mortality and risk.Neurology61(9) , 1185–1190 (2003).
  • Sergeant N , BomboisS, GhestemA et al.: Truncated β-amyloid peptide species in preclinical Alzheimer‘s disease as new targets for the vaccination approach.J. Neurochem.85(6) , 1581–1591 (2003).
  • Finder VH , GlockshuberR: amyloid-β aggregation.Neurodegener. Dis.4(1) , 13–27 (2007).
  • Caughey B , LansburyPT: Protofibrils, pores, fibrils and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders.Annu. Rev. Neurosci.26 , 267–298 (2003).
  • Howlett DR , JenningsKH, LeeDC et al.: Aggregation state and neurotoxic properties of Alzhiemer β-amyloid peptide.Neurodegeneration4(1) , 23–32 (1995).
  • Lorenzo A , YanknerBA: β-amyloid neurotoxicity requires fibril formation and is inhibited by congo red.Proc. Natl Acad. Sci. USA91(25) , 12243–12247 (1994).
  • Taylor BM , SarverRW, FiciG et al.: Spontaneous aggregation and cytotoxicity of the β-amyloid Aβ1–40: a kinetic model.J. Protein Chem.22(1) , 31–40 (2003).
  • Broersen K , RousseauF, SchymkowitzJ: The culprit behind amyloid β peptide related neurotoxicity in Alzheimer‘s disease: oligomer size or conformation?Alzheimers Res. Ther.2(4) , 12 (2010).
  • Lambert MP , BarlowAK, ChromyBA et al.: Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.Proc. Natl Acad. Sci. USA95(11) , 6448–6453 (1998).
  • Cleary JP , WalshDM, HofmeisterJJ et al.: Natural oligomers of the amyloid-β protein specifically disrupt cognitive function.Nat. Neurosci.8(1) , 79–84 (2005).
  • Shankar GM , LiS, MehtaTH et al.: amyloid-β protein dimers isolated directly from Alzheimer‘s brains impair synaptic plasticity and memory.Nat. Med.14(8) , 837–842 (2008).
  • Eikelenboom P , VeerhuisR, ScheperW, RozemullerAJ, Van Gool WA, Hoozemans JJ: The significance of neuroinflammation in understanding Alzheimer‘s disease. J. Neural Transm.113(11) , 1685–1695 (2006).
  • Gibson GE , StarkovA, BlassJP, RatanRR, BealMF: Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases.Biochim. Biophys. Acta1802(1) , 122–134 (2010).
  • Gabuzda D , BusciglioJ, ChenLB, MatsudairaP, YanknerBA: Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative.J. Biol. Chem.269(18) , 13623–13628 (1994).
  • Mattson MP : ER calcium and Alzheimer‘s disease: in a state of flux.Sci. Signal.3(114) , PE10 (2010).
  • Mattson MP , ChengB, DavisD, BryantK, LieberburgI, RydelRE: β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.J. Neurosci.12(2) , 376–389 (1992).
  • Leissring MA , ParkerI, LaferlaFM: Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals.J. Biol. Chem.274(46) , 32535–32538 (1999).
  • Reeves RH , RobakisNK, Oster-GraniteML, WisniewskiHM, CoyleJT, GearhartJD: Genetic linkage in the mouse of genes involved in down syndrome and Alzheimer‘s disease in man.Brain Res.388(3) , 215–221 (1987).
  • Hardy J : The amyloid hypothesis for Alzheimer‘s disease: a critical reappraisal.J. Neurochem.110(4) , 1129–1134 (2009).
  • Solomon B , KoppelR, HananE, KatzavT: Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide.Proc. Natl Acad. Sci. USA93(1) , 452–455 (1996).
  • Bard F , CannonC, BarbourR et al.: Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.Nat. Med.6(8) , 916–919 (2000).
  • Schenk D , BarbourR, DunnW et al.: Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse.Nature400(6740) , 173–177 (1999).
  • Lemere CA , MaronR, SpoonerET et al.: Nasal Aβ treatment induces anti-Aβ antibody production and decreases cerebral amyloid burden in PDAPP mice.Ann. NY Acad. Sci.920 , 328–331 (2000).
  • Weiner HL , LemereCA, MaronR et al.: Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer‘s disease.Ann. Neurol.48(4) , 567–579 (2000).
  • Das P , MurphyMP, YounkinLH, YounkinSG, GoldeTE: Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition.Neurobiol. Aging22(5) , 721–727 (2001).
  • Janus C , PearsonJ, MclaurinJ et al.: Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer‘s disease.Nature408(6815) , 979–982 (2000).
  • Morgan D , DiamondDM, GottschallPE et al.: Aβ-peptide vaccination prevents memory loss in an animal model of Alzheimer‘s disease.Nature408(6815) , 982–985 (2000).
  • Orgogozo JM , GilmanS, DartiguesJF et al.: Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization.Neurology61(1) , 46–54 (2003).
  • Holmes C , BocheD, WilkinsonD et al.: Long-term effects of Aβ42 immunisation in Alzheimer‘s disease: follow-up of a randomised, placebo-controlled I trial.Lancet372(9634) , 216–223 (2008).
  • Gilman S , KollerM, BlackRS et al.: Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial.Neurology64(9) , 1553–1562 (2005).
  • Hock C , KonietzkoU, StrefferJR et al.: Antibodies against β-amyloid slow cognitive decline in Alzheimer‘s disease.Neuron38(4) , 547–554 (2003).
  • Nicoll JAR , WilkinsonD, HolmesC, SteartP, MarkhamH, WellerRO: Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report.Nat. Med.9(4) , 448–452 (2003).
  • Ferrer I , RoviraMB, GuerraMLS, ReyMJ, Costa-JussaF: Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer‘s disease.Brain Pathol.14(1) , 11–20 (2004).
  • Masliah E , HansenL, AdameA et al.: Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease.Neurology64(1) , 129–131 (2005).
  • Bayer AJ , BullockR, JonesRW et al.: Evaluation of the safety and immunogenicity of synthetic Aβ 42 (AN1792) in patients with AD.Neurology64(1) , 94–101 (2005).
  • Pride M , SeubertP, GrundmanM, HagenM, EldridgeJ, BlackRS: Progress in the active immunotherapeutic approach to Alzheimer‘s disease: clinical investigations into AN1792-associated meningoencephalitis.Neurodegener. Dis.5(3–4) , 194–196 (2008).
  • Monsonego A , ZotaV, KarniA et al.: Increased T-cell reactivity to amyloid-β protein in older humans and patients with Alzheimer disease.J. Clin. Invest.112(3) , 415–422 (2003).
  • Maier M , SeabrookTJ, LazoND et al.: Short amyloid-β(Aβ) immunogens reduce cerebral Aβ load and learning deficits in an Alzheimer‘s disease mouse model in the absence of an a β-specific cellular immune response.J. Neurosci.26(18) , 4717–4728 (2006).
  • Monsonego A , MaronR, ZotaV, SelkoeDJ, WeinerHL: Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: implications for the pathogenesis and treatment of Alzheimer‘s disease.Proc. Natl Acad. Sci. USA98(18) , 10273–10278 (2001).
  • Agadjanyan MG , GhochikyanA, PetrushinaI et al.: Prototype Alzheimer‘s disease vaccine using the immunodominant B cell epitope from β-amyloid and promiscuous T-cell epitope pan HLA DR-binding peptide.J. Immunol.174(3) , 1580–1586 (2005).
  • Ghochikyan A , MkrtichyanM, PetrushinaI et al.: Prototype Alzheimer‘s disease epitope vaccine induced strong Th2-type anti-Aβ antibody response with alum to quil a adjuvant switch.Vaccine24(13) , 2275–2282 (2006).
  • Lemere CA , SpoonerET, LeveroneJF, MoriC, ClementsJD: Intranasal immunotherapy for the treatment of Alzheimer‘s disease: Escherichia coli LT and LT(R192G) as mucosal adjuvants.Neurobiol. Aging23(6) , 991–1000 (2002).
  • Muhs A , HickmanDT, PihlgrenM et al.: Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice.Proc. Natl Acad. Sci. USA104(23) , 9810–9815 (2007).
  • Nikolic WV , BaiY, ObregonD et al.: Transcutaneous immunization with Aβ peptide results in reduction of cerebral Aβ deposits in a mouse model of Alzheimer‘s disease.Cell Transplant.16(3) , 339–339 (2007).
  • Bach P , TschapeJA, KopietzF et al.: Vaccination with Aβ-displaying virus-like particles reduces soluble and insoluble cerebral Aβ and lowers plaque burden in APP transgenic mice.J. Immunol.182(12) , 7613–7624 (2009).
  • Salloway S , SperlingR, GilmanS et al.: A2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease.Neurology73(24) , 2061–2070 (2009).
  • Schneeberger A , MandlerM, OtawaO, ZaunerW, MattnerF, SchmidtW: Development of affitope vaccines for Alzheimer‘s disease (AD) – from concept to clinical testing.J. Nutr. Health Aging13(3) , 264–267 (2009).
  • Qu B , RosenbergRN, LiL, BoyerPJ, JohnstonSA: Gene vaccination to bias the immune response to amyloid-β peptide as therapy for Alzheimer disease.Arch. Neurol.61(12) , 1859–1864 (2004).
  • Lambracht-Washington D , QuBX, FuM, EagarTN, StuveO, RosenbergRN: DNA β-amyloid(1–42) trimer immunization for Alzheimer disease in a wild-type mouse model.JAMA302(16) , 1796–1802 (2009).
  • Okura Y , MiyakoshiA, KohyamaK, ParkIK, StaufenbielM, MatsumotoY: Nonviral Aβ DNA vaccine therapy against Alzheimer‘s disease: long-term effects and safety.Proc. Natl Acad. Sci. USA103(25) , 9619–9624 (2006).
  • Movsesyan N , GhochikyanA, MkrtichyanM et al.: Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine – a novel immunotherapeutic strategy.PLoS One3(5) , E2124 (2008).
  • Dasilva KA , BrownME, MclaurinJ: Reduced oligomeric and vascular amyloid-β following immunization of TgCRND8 mice with an Alzheimer‘s DNA vaccine.Vaccine27(9) , 1365–1376 (2009).
  • Santos K , SanfilippoCM, NarrowWC et al.: Infectivity of herpes simplex virus type-1 (HSV-1) amplicon vectors in dendritic cells is determined by the helper virus strain used for packaging.J. Virol. Methods145(1) , 37–46 (2007).
  • Frazer ME , HughesJE, MastrangeloMA, TibbensJL, FederoffHJ, BowersWJ: Reduced pathology and improved behavioral performance in Alzheimer‘s disease mice vaccinated with HSV amplicons expressing amyloid-β and interleukin-4.Mol. Ther.16(5) , 845–853 (2008).
  • Bowers WJ , MastrangeloMA, StanleyHA, CaseyAE, MiloLJ Jr, Federoff HJ: HSV amplicon-mediated Aβ vaccination in Tg2576 mice: differential antigen-specific immune responses. Neurobiol. Aging26(4) , 393–407 (2005).
  • Federoff HJ : Development of vaccination approaches for the treatment of neurological diseases.J. Comp. Neurol.515(1) , 4–14 (2009).
  • Mouri A , NodaY, HaraH, MizoguchiH, TabiraT, NabeshimaT: Oral vaccination with a viral vector containing Aβ cDNA attenuates age-related Aβ accumulation and memory deficits without causing inflammation in a mouse Alzheimer model.FASEB J.21(9) , 2135–2148 (2007).
  • Zhang J , WuX, QinC et al.: A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and β-amyloid plaques in a mouse model of Alzheimer‘s disease.Neurobiol. Dis.14(3) , 365–379 (2003).
  • Kim HD , JinJJ, MaxwellJA, FukuchiK: Enhancing Th2-immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer‘s disease.Immunol. Lett.112(1) , 30–38 (2007).
  • Demattos RB , BalesKR, CumminsDJ, DodartJC, PaulSM, HoltzmanDM: Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer‘s disease.Proc. Natl Acad. Sci. USA98(15) , 8850–8855 (2001).
  • Pfeifer M , BoncristianoS, BondolfiL et al.: Cerebral hemorrhage after passive anti-Aβ immunotherapy.Science298(5597) , 1379 (2002).
  • Wilcock DM , RojianiA, RosenthalA et al.: Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage.J. Neuroinflammation1(1) , 24 (2004).
  • Oddo S , BillingsL, KesslakJP, CribbsDH, LaferlaFM: Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome.Neuron43(3) , 321–332 (2004).
  • Chauhan NB , SiegelGJ: Reversal of amyloid β toxicity in Alzheimer‘s disease model Tg2576 by intraventricular antiamyloid β antibody.J. Neurosci. Res.69(1) , 10–23 (2002).
  • Klyubin I , WalshDM, LemereCA et al.: amyloid-β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo.Nat. Med.11(5) , 556–561 (2005).
  • Kerchner GA , BoxerAL: Bapineuzumab.Expert Opin. Biol. Ther.10(7) , 1121–1130 (2010).
  • Siemers ER , FriedrichS, DeanRA et al.: Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with Alzheimer disease.Clin. Neuropharmacol.33(2) , 67–73 (2010).
  • Dodel R , NeffF, NoelkerC et al.: Intravenous immunoglobulins as a treatment for Alzheimer‘s disease: rationale and current evidence.Drugs70(5) , 513–528 (2010).
  • Szabo P , RelkinN, WekslerME: Natural human antibodies to amyloid β peptide.Autoimmun. Rev.7(6) , 415–420 (2008).
  • Dodel RC , DuY, DepboyluC et al.: Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer‘s disease.J. Neurol. Neurosurg. Psychiatry75(10) , 1472–1474 (2004).
  • Relkin NR , SzaboP, AdamiakB et al.: 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease.Neurobiol. Aging30(11) , 1728–1736 (2009).
  • Ryan DA , MastrangeloMA, NarrowWC, SullivanMA, FederoffHJ, BowersWJ: Aβ-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer‘s disease mice.Mol. Ther.18(8) , 1471–1481 (2010).
  • Sudol KL , MastrangeloMA, NarrowWC et al.: Generating differentially targeted amyloid-β specific intrabodies as a passive vaccination strategy for Alzheimer‘s disease.Mol. Ther.17(12) , 2031–2040 (2009).
  • Fukuchi K , TaharaK, KimHD et al.: anti-Aβ single-chain antibody delivery via adeno-associated virus for treatment of Alzheimer‘s disease.Neurobiol. Dis.23(3) , 502–511 (2006).
  • Levites Y , JansenK, SmithsonLA et al.: Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid β, amyloid β40, and amyloid β42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice.J. Neurosci.26(46) , 11923–11928 (2006).
  • Smith CD : Neuroimaging through the course of Alzheimer‘s disease.J. Alzheimers Dis.19(1) , 273–290 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.