746
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy for Alzheimer‘s Disease: From Anti-β-Amyloid to Tau-Based Immunization Strategies

, , , , , , , & show all
Pages 213-238 | Published online: 17 Feb 2012

References

  • Qiu C , KivipeltoM, von Strauss E. Epidemiology of Alzheimer‘s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci.11(2) , 111–128 (2009).
  • Thies W , Bleiler L; Alzheimer‘s Association. 2011 Alzheimer‘s disease facts and figures. Alzheimers Dement.7(2) , 208–244 (2011).
  • Frisardi V , SolfrizziV, ImbimboPB et al. Towards disease-modifying treatment of Alzheimer‘s disease: drugs targeting beta-amyloid. Curr. Alzheimer Res. 7(1) , 40–55 (2010).
  • Panza F , SolfrizziV, FrisardiV et al. Disease-modifying approach to the treatment of Alzheimer‘s disease: from alpha-secretase activators to gamma-secretase inhibitors and modulators. Drugs Aging 26(7) , 537–555 (2009).
  • Panza F , SolfrizziV, FrisardiV et al. Beyond the neurotransmitter-focused approach in treating Alzheimer‘s disease: drugs targeting beta-amyloid and tau protein. Aging Clin. Exp. Res. 21(6) , 386–406 (2009).
  • Alzheimer A . On a peculiar disease of the cerebral cortex. Allgemeine Zeitschrift fur Psychiatrie und Psychish-Gerichtlich Medicin64 , 146–148 (1907).
  • Khachaturian ZS . Diagnosis of Alzheimer‘s disease. Arch. Neurol.42(11) , 1097–1105 (1985).
  • Mirra SS , HeymanA, McKeelD et al. The consortium to establish a registry for Alzheimer‘s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer‘s disease. Neurology 41(4) , 479–486 (1991).
  • Newell KL , HymanBT, GrowdonJH, Hedley-WhyteET. Application of the National Institute on Aging (NIA)–Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J. Neuropathol. Exp. Neurol.58(11) , 1147–1155 (1999).
  • Su JH , CummingsBJ, CotmanCW. Early phosphorylation of tau in Alzheimer‘s disease occurs at Ser-202 and is preferentially located within neurites. NeuroReport5(17) , 2358–2362 (1994).
  • Su JH , CummingsBJ, CotmanCW. Plaque biogenesis in brain aging and Alzheimer‘s disease: I. Progressive changes in phosphorylation states of paired helical filaments and neurofilaments. Brain Res.739(1–2) , 79–87 (1996).
  • Graeber MB , KoselS, EgenspergerR et al. Rediscovery of the case described by Alois Alzheimer in 1911: historical, histological and molecular genetic analysis. Neurogenetics 1(1) , 73–80 (1997).
  • Small SA , DuffK. Linking Aβ and tau in late-onset Alzheimer‘s disease: a dual pathway hypothesis. Neuron60(4) , 534–542 (2008).
  • Walter J , KaetherC, SteinerH, HaassC. The cell biology of Alzheimer‘s disease: uncovering the secrets of secretases. Curr. Opin. Neurobiol.11(5) , 585–590 (2001).
  • Seubert P , Vigo-PelfryC, EschF et al. Isolation and quantification of soluble Alzheimer‘s β-peptide from biological fluids. Nature 359(6393) , 325–327 (1996).
  • Iwatsubo T , OdakaA, SuzukiN, MizusawaH, NukinaN, IharaY. Visualization of Ab42(43) and Ab40 in senile plaques with specific Ab monoclonals: evidence that the initially deposited species is Ab42(43). Neuron13(1) , 45–53 (1993).
  • Hardy J , AllsopD. Amyloid deposition as the central event in the aetiology of Alzheimer‘s disease. Trends Pharmacol. Sci.12(5) , 383–388 (1991).
  • Armstrong RA . The pathogenesis of Alzheimer‘s disease: a reevaluation of the “Amyloid Cascade Hypothesis”. Int. J. Alzheimers Dis.2011 , 630865 (2011)
  • Giasson BI , LeeVMY, TrojanowskiJQ. Interactions of amyloidogenic proteins. Neuromolecular Med.4(1–2) , 49–58 (2003).
  • Smith MA , SiedlakSL, RicheyPL et al. Tau protein directly interacts with the amyloid β-protein precursor: implications for Alzheimer‘s disease. Nat. Med. 1(4) , 365–369 (1995).
  • Oyama F , ShimadaH, OyamaR, TitaniK, IharaY. β-amyloid protein precursor and τ mRNA levels versus β-amyloid plaque and neurofibrillary tangles in the aged human brain. J. Neurochem.60(5) , 1658–1664 (1993).
  • Shankar GM , LiS, MehtaTH et al. Amyloid-β protein dimers isolated directly from Alzheimer‘s brains impair synaptic plasticity and memory. Nat. Med. 14(8) , 837–842 (2008).
  • Selkoe DJ . Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res.192(1) , 106–113 (2008).
  • Koffie RM , Meyer-LuehmannM, HashimotoT et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106(10) , 4012–4017 (2009).
  • Shankar GM , BloodgoodBL, TownsendM, WalshDM, SelkoeDJ, SabatiniBL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci.27(11) , 2866–2875 (2007).
  • Lesnè S , KohMT, KotilinekL et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440(7082) , 352–357 (2006).
  • Imbimbo BP , PanzaF, FrisardiV et al. Therapeutic intervention for Alzheimer‘s disease with γ-secretase inhibitors: still a viable option? Expert Opin. Investig. Drugs 20(3) , 325–341 (2011).
  • Vellas B , SolO, SnyderP et al. EHT0202 in Alzheimer‘s disease: a 3-month, randomized, placebo-controlled, double-blind study. Curr. Alzheimer Res. 8(2) , 203–212 (2011).
  • Lannfelt L , BlennowK, ZetterbergH et al.; PBT2-201-EURO study group. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer‘s disease: a Phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol.7(9) , 779–786 (2008).
  • Faux NG , RitchieCW, GunnA et al. PBT2 rapidly improves cognition in Alzheimer‘s disease: additional Phase II analyses. J. Alzheimers Dis. 20(2) , 509–516 (2010).
  • Wisniewski T , KonietzkoU. Amyloid-beta immunisation for Alzheimer‘s disease. Lancet Neurol.7(9) , 805–811 (2008).
  • Cribbs DH . Abeta DNA vaccination for Alzheimer‘s disease: focus on disease prevention. CNS Neurol. Disord. Drug Targets9(2) , 207–216 (2010).
  • Takashima A . TAU aggregation is a therapeutic target for Alzheimer‘s disease. Curr. Alzheimer Res.7(8) , 665–669 (2010).
  • Lace GL , WhartonSB, IncePG. A brief history of tau: the evolving view of the microtubule-associated protein tau in neurodegenerative diseases. Clin. Neuropathol.26(2) , 43–58 (2007).
  • Clark CM , XieS, ChittamsJ et al. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol. 60(12) , 1696–1702 (2003).
  • Sahara N , MaedaS, MurayamaM et al. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur. J. Neurosci. 25(10) , 3020–3029 (2007).
  • Kimura T , FukudaT, SaharaN et al. Aggregation of detergent-insoluble tau is involved in neuronal loss but not in synaptic loss. J. Biol. Chem. 285(49) , 38692–38699 (2010).
  • Maeda S , SaharaN, SaitoY et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry 46(12) , 3856–3861 (2007).
  • Arriagada PV , GrowdonJH, Hedley-WhyteET, HymanBT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer‘s disease. Neurology42(3 Pt 1) , 631–639 (1992).
  • Tariot PN , AisenPS. Can lithium or valproate untie tangles in Alzheimer‘s disease? J. Clin. Psychiatry70(6) , 919–921 (2009).
  • Medina M . Recent developments in tau-based therapeutics for neurodegenerative diseases. Recent Pat. CNS Drug Discov.6(1) , 20–30 (2011).
  • Haass C , SelkoeDJ. Protein oligomers in neurodegeneration: lessons from the Alzheimer‘s amyloid beta-peptide. Nat. Rev. Mol. Cell. Biol.8(2) , 101–112 (2007).
  • Iqbal K , LiuF, GongCX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol.118(1) , 53–69 (2009).
  • Brunden KR , TrojanowskiJQ, LeeVM. Advances in tau-focused drug discovery for Alzheimer‘s disease and related tauopathies. Nat. Rev. Drug Discov.8(10) , 783–793 (2009).
  • Andorfer C , AckerCM, KressY, HofPR, DuffK, DaviesP. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci.25(22) , 5446–5454 (2005).
  • de Calignon A , Spires-JonesTL, PitstickR, CarlsonGA, HymanBT. Tangle-bearing neurons survive despite disruption of membrane integrity in a mouse model of tauopathy. J. Neuropathol. Exp. Neurol.68(7) , 757–761 (2009).
  • Grill JD , CummingsJL. Current therapeutic targets for the treatment of Alzheimer‘s disease. Expert Rev. Neurother.10(5) , 711–728 (2010).
  • Bulic B , PickhardtM, MandelkowEM, MandelkowE. Tau protein and tau aggregation inhibitors. Neuropharmacology59(4–5) , 276–289 (2010).
  • Necula M , ChiritaCN, KuretJ. Cyanine dye N744 inhibits tau fibrillization by blocking filament extension: implications for the treatment of tauopathic neurodegenerative diseases. Biochemistry44(30) , 10227–10237 (2005).
  • Pickhardt M , BiernatJ, KhlistunovaI et al. N-phenylamine derivatives as aggregation inhibitors in cell models of tauopathy. Curr. Alzheimer Res.4(4) , 397–402 (2007).
  • Bulic B , PickhardtM, KhlistunovaI et al. Rhodanine-based tau aggregation inhibitors in cell models of tauopathy. Angew. Chem. Int. Ed. Engl. 46(48) , 9215–9219 (2007).
  • Pickhardt M , LarbigG, KhlistunovaI et al. Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of tau aggregation and toxicity in vitro and in cells. Biochemistry 46 , 10016–10023 (2007).
  • Pickhardt M , GazovaZ, von Bergen M et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer‘s paired helical filaments in vitro and in cells. J. Biol. Chem.280(5) , 3628–3635 (2005).
  • Crowe A , HuangW, BallatoreC et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 48(32) , 7732–7745 (2009).
  • Buchholz K , SchirmerRH, EubelJK et al. Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum. Antimicrob. Agents Chemother. 52(1) , 183–191 (2008).
  • Wischik CM , BenthamP, WischikDJ, SengKM. Tau aggregation inhibitor (TAI) therapy with Rember™ arrests disease progression in mild and moderate Alzheimer‘s disease over 50 weeks. Alzheimers Dement.4(Suppl. 1) , T167 (2008).
  • O‘Leary JC 3rd, Li Q, Marinec P et al. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener.5 , 45 (2010).
  • Wischik C , StaffR. Challenges in the conduct of disease-modifying trials in AD: practical experience from a Phase 2 trial of tau-aggregation inhibitor therapy. J. Nutr. Health Aging13(4) , 367–369 (2009).
  • Staff RT , AhearnTS, MurrayAD et al. Tau aggregation inhibitor (TAI) therapy with Rember™ arrests the trajectory of rCBF decline in brain regions affected by tau pathology in mild and moderate Alzheimer‘s disease (AD). Alzheimers Dement. 4(Suppl. 2) , T775 (2008).
  • Murray AD , StaffRT, AhearnTS et al. Tau aggregation inhibitor (TAI) therapy with Rember™ changes glucose metabolism in the medial temporal lobes in mild and moderate Alzheimer‘s disease (AD). Alzheimers Dement. 4(Suppl. 2) , T786 (2008).
  • Masuda M , SuzukiN, TaniguchiS et al. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45(19) , 6085–6094 (2009).
  • Schneider A , MandelkowE. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics5(3) , 443–457 (2008).
  • Illenberger S , Zheng-FischhoferQ, PreussU et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer‘s disease. Mol. Biol. Cell 9(6) , 1495–1512 (1998).
  • Wen Y , PlanelE, HermanM et al. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci. 28(10) , 2624–2632 (2008).
  • Plattner F , AngeloM, GieseKP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem.281(35) , 25457–25465 (2006).
  • Porsteinsson AP , TariotPN, ErbR, GaileS. An open trial of valproate for agitation in geriatric neuropsychiatric disorders. Am. J. Geriatr. Psychiatry5(4) , 344–351 (1997).
  • Porsteinsson AP , TariotPN, JakimovichLJ et al. Valproate therapy for agitation in dementia: open-label extension of a double-blind trial. Am. J. Geriatr. Psychiatry 11(4) , 434–440 (2003).
  • Leyhe T , EschweilerGW, StranskyE et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer‘s disease. J. Alzheimers Dis. 16(3) , 649–656 (2009).
  • Hampel H , EwersM, BurgerK et al. Lithium trial in Alzheimer‘s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70(6) , 922–931 (2009).
  • Tariot PN , AisenP, CummingsJ et al. The ADCS valproate neuroprotection trial: primary efficacy and safety results. Alzheimer‘s Dement. 5(4) , P84–P85 (2009).
  • Gong CX , IqbalK. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem.15(23) , 2321–2328 (2008).
  • Kins S , CrameriA, EvansDR, HemmingsBA, NitschRM, GotzJ. Reduced protein phosphatise 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J. Biol. Chem.276(41) , 38193–38200 (2001).
  • Arendt T , HolzerM, FruthR, BrucknerMK, GartnerU. Paired helical filament-like phosphorylation of tau, deposition of β/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience69(3) , 691–698 (1995).
  • Iqbal K , Alonso Adel C, El-Akkad E et al. Significance and mechanism of Alzheimer neurofibrillary degeneration and therapeutic targets to inhibit this lesion. J. Mol. Neurosci.19(1–2) , 95–99 (2002).
  • Tanimukai H , KudoT, TanakaT, Grundke-IqbalI, IqbalK, TakedaM. Novel therapeutic strategies for neurodegenerative disease. Psychogeriatrics9(2) , 103–109 (2009).
  • Golde TE , PetrucelliL, LewisJ. Targeting Abeta and tau in Alzheimer‘s disease, an early interim report. Exp. Neurol.223(2) , 252–266 (2010).
  • Bassan M , ZamostianoR et al. Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72(3) , 1283–1293 (1999).
  • Stewart AJ , FoxA, MorimotoBH, GozesI. Looking for novel ways to treat the hallmarks of Alzheimer‘s disease. Expert Opin. Investig. Drugs16(8) , 1183–1196 (2007).
  • Gozes I , GiladiE, PinhasovA, BardeaA, BrennemanDE. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther.293(3) , 1091–1098 (2000).
  • Kennedy GJ , GoldeTE, TariotPN, CummingsJL. Amyloid-based interventions in Alzheimer‘s disease. CNS Spectr.12(Suppl. 1) , 1–14 (2007).
  • Schenk D , BarbourR, DunnW et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740) , 173–177 (1999).
  • Morgan D , DiamondD, GottschallP et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer‘s disease. Nature 408(6815) , 982–985 (2000).
  • Wang CM , DevriesS, CamboniM, GlassM, MartinPT. Immunization with the SDPM1 peptide lowers amyloid plaque burden and improves cognitive function in the APPswePSEN1(A246E) transgenic mouse model of Alzheimer‘s disease. Neurobiol. Dis.39(3) , 409–422 (2010).
  • Wiessner C , WiederholdKH, TissotAC et al. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J. Neurosci. 31(25) , 9323–9331 (2011).
  • Sigurdsson EM , ScholtzovaH, MehtaP, FrangioneB, WisniewskiT. Immunization with a non-toxic/non-fibrillar amyloid-β homologous peptide reduces Alzheimer‘s disease associated pathology in transgenic mice. Am. J. Pathol.159(2) , 439–447 (2001).
  • Maier M , SeabrookTJ, LazoND et al. Short amyloid beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer‘s disease mouse model in the absence of an Abeta-specific cellular immune response. J. Neurosci. 26(18) , 4717–4728 (2006).
  • Frenkel D , KatzO, SolomonB. Immunization against Alzheimer‘s beta -amyloid plaques via EFRH phage administration. Proc. Natl Acad. Sci. USA97(21) , 11455–11459 (2000).
  • Bard F , CannonC, BarbourR et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6(8) , 916–919 (2000).
  • Cattepoel S , HanenbergM, KulicL, NitschRM. Chronic intranasal treatment with an anti-Aβ(30–42) scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimer‘s disease. PLoS ONE6(4) , e18296 (2011).
  • Bacskai BJ , KajdaszST, ChristieRH et al. Imaging of amyloid-β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat. Med. 7(3) , 369–372 (2001).
  • Solomon B , KoppelR, HananE, KatzavT. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl Acad. Sci. USA93(1) , 452–455 (1996).
  • Das P , HowardV, LoosbrockN, DicksonD, MurphyMP, GoldeTE. Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma-/- knock-out mice. J. Neurosci.23(24) , 8532–8538 (2003).
  • Sigurdsson EM , KnudsenE, AsuniA et al. An attenuated immune response is sufficient to enhance cognition in an Alzheimer‘s disease mouse model immunized with amyloid-β derivatives. J. Neurosci. 24(28) , 6277–6282 (2004).
  • Brody DL , HoltzmanDM. Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci.31 , 175–193 (2008).
  • Rosenmann H , GrigoriadisN, KarussisD et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63(10) , 1459–1467 (2006).
  • Boimel M , GrigoriadisN, LourbopoulosA et al. Efficacy safety of immunization with phosphorylated tau against neurofibrillary and tangles in mice. Exp. Neurol. 224(2) , 472–485 (2010).
  • Novak M . Tau vaccine: active immunization with misfloded tau protein attenuates tau pathology in the transgenic rat model of tauopathy. Alzheimers Dement.5(Suppl. 1) , P93 (2009) (Abstract).
  • Zilka N , KontsekovaE, NovakM. Chaperone-like antibodies targeting misfolded tau protein: new vistas in the immunotherapy of neurodegenerative foldopathies. J. Alzheimers Dis.15(2) , 169–179 (2008).
  • Kontsekova E , IvanovovaN, HandzusovaM, NovakM. Chaperone-like antibodies in neurodegenerative tauopathies: implication for immunotherapy. Cell. Mol. Neurobiol.29(6–7) , 793–798 (2009).
  • Bretteville A , PlanelE. Tau aggregates: toxic, inert, or protective species? J. Alzheimers Dis.14(4) , 431–436 (2008).
  • Congdon EE , DuffKE. Is tau aggregation toxic or protective? J. Alzheimers Dis.14(4) , 453–457 (2008).
  • Kayed R , JacksonGR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr. Opin. Immunol.21(3) , 359–363 (2009)
  • Walsh DM , SelkoeDJ. Abeta oligomers – a decade of discovery. J. Neurochem.101(5) , 1172–1184 (2007).
  • Bayer AJ , BullockR, JonesRW et al. Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64(1) , 94–101 (2005).
  • Pride M , SeubertP, GrundmanM, HagenM, EldridgeJ, BlackRS. Progress in the active immunotherapeutic approach to Alzheimer‘s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener. Dis.5(3–4) , 194–196 (2008).
  • Orgogozo JM , GilmanS, DartiguesJF et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1) , 46–54 (2003).
  • Ferrer I , Boada Rovira M, Sánchez Guerra ML, Rey MJ, Costa-Jussá F. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer‘s disease. Brain Pathol.14(1) , 11–20 (2004).
  • Nicoll JA , WilkinsonD, HolmesC, SteartP, MarkhamH, WellerRO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide. a case report. Nat. Med.9(4) , 448–452 (2003).
  • Fisher Y , NemirovskyA, BaronR, MonsonegoA. T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer‘s disease. PLoS ONE 26, 5(5) , e10830 (2010).
  • Bombois S , MaurageCA, GompelM et al. Absence of beta-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch. Neurol. 64(4) , 583–587 (2007).
  • Masliah E , HansenL, AdameA et al. Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64(1) , 129–131 (2005).
  • Hock C , KonietzkoU, StrefferJR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer‘s disease. Neuron 38(4) , 547–554 (2003).
  • Holmes C , BocheD, WilkinsonD et al. Long-term effects of Aβ42 immunisation in Alzheimer‘s disease: follow-up of a randomised, placebo-controlled Phase I trial. Lancet 372(9634) , 216–223 (2008).
  • Götz J , ChenF, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ42 fibrils. Science293(5534) , 1491–1495 (2001).
  • Knopman DS , ParisiJE, SalviatiA et al. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 62(11) , 1087–1095 (2003).
  • Oddo S , BillingsL, KesslakJP, CribbsDH, LaFerlaFM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron43(3) , 321–332 (2004).
  • Tabira T . Immunization therapy for Alzheimer disease: a comprehensive review of active immunization strategies. Tohoku J. Exp. Med.220(2) , 95–106 (2010).
  • Lemere CA , MasliahE. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat. Rev. Neurol.6(2) , 108–119 (2010).
  • Das P , MurphyM, YounkinL, YounkinS, GoldeT. Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging22(5) , 721–727 (2010).
  • Frenkel D , DewachterI, van Leuven F, Solomon B. Reduction of β-amyloid plaques in brain of transgenic mouse model of Alzheimer‘s disease by EFRH-phage immunization. Vaccine21(11–12) , 1060–1065 (2003).
  • Agadjanyan MG , GhochikyanA, PetrushinaI et al. Prototype Alzheimer‘s disease vaccine using the immunodominant B cell epitope from β-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J. Immunol. 174(3) , 1580–1586 (2005).
  • Petrushina I , GhochikyanA, MktrichyanM et al. Alzheimer‘s disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Aβ species in amyloid precursor protein transgenic mice. J. Neurosci. 27(46) , 12721–12731 (2007).
  • Bowers WJ , MastrangeloMA, StanleyHA, CaseyAE, MiloLJ Jr, Federoff HJ. HSV amplicon-mediated Aβ vaccination in Tg2576 mice: differential antigenspecific immune responses. Neurobiol. Aging26(4) , 393–407 (2005).
  • Okura Y , MiyakoshiA, KohyamaK, ParkIK, StaufenbielM, MatsumotoY. Nonviral Abeta DNA vaccine therapy against Alzheimer‘s disease: long-term effects and safety. Proc. Natl Acad. Sci. USA103(25) , 9619–9624 (2006).
  • Movsesyan N , GhochikyanA, MkrtichyanM et al. Reducing AD-like pathology in 3xTg-AD mouse model by DNA epitope vaccine–a novel immunotherapeutic strategy. PLoS ONE 3 , e2124 (2008).
  • Bach P , TschäpeJA, KopietzF et al. Vaccination with Aβ-displaying virus-like particles reduces soluble and insoluble cerebral Aβ and lowers plaque burden in APP transgenic mice. J. Immunol. 182(12) , 7613–7624 (2008).
  • Lemere CA , MaronR, SpoonerET et al. Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann. NY Acad. Sci. 920 , 328–331 (2000).
  • Zhang J , WuX, QinC et al. A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and beta-amyloid plaques in a mouse model of Alzheimer‘s disease. Neurobiol. Dis. 14(3) , 365–379 (2003).
  • Frenkel D , PuckettL, PetrovicS et al. A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Ann. Neurol. 63(5) , 591–601 (2008).
  • Weiner HL , LemereCA, MaronR et al. Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer‘s disease. Ann. Neurol. 48(4) , 567–579 (2000).
  • Asuni AA , BoutajangoutA, QuartermainD, SigurdssonEM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci.27(34) , 9115–9129 (2007).
  • Lewis J , McGowanE, RockwoodJ et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 5(4) , 402–405 (2000).
  • Rosenmann H , GrigoriadisN, Eldar-LevyH et al. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp. Neurol. 212(1) , 71–78 (2008).
  • Sigurdsson EM , QuatermainD, BoutajangoutA. Tau immunotherapy prevents cognitive decline and clears pathological tau in a tangle mouse model. Alzheimeirs Dement.4(Suppl. 1) , T191 (2008).
  • Khrisnamurthy PK , SaitHBR, BoutajangoutA, SigurdssonEM. Immunotherapy targeting Alzheimer‘s phosphor-tau epitope within the microtubule binding region of tau clears pathological tau and prevents functional decline in a mouse model of tauopathy. Alzheimeirs Dement.5(Suppl. 1) , P112 (2009).
  • Andorfer C , KressY, EspinozaM et al. Hyperphosphsorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. 86(3) , 582–590 (2003).
  • Boutajangout A , FrangioneB, BrionJP, WisniewskyT, SigurdssonEM. Presenilin 1 mutation promotes tau phosphorylation and aggregation in a novel Alzheimer‘s disease mouse model. Alzheimeirs Dement.4(Suppl. 1) , T185 (2008).
  • Wisniewski T , SigurdssonEM. Murine models of Alzheimer‘s disease and their use in developing immunotherapies. Biochim. Biophys. Acta1802(10) , 847–859 (2010).
  • Kayed R . Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease. Hum. Vaccin.6(11) , 931–935 (2010).
  • Jicha GA . Is passive immunization for Alzheimer‘s disease ‘alive and well‘ or ‘dead and buried‘? Expert Opin. Biol. Ther.9 , 481–491 (2009).
  • Panza F , FrisardiV, ImbimboBP, SeripaD, SolfrizziV, PilottoA. Monoclonal antibodies against β-amyloid (Aβ) for the treatment of Alzheimer‘s disease: the Aβ target at a crossroads. Expert Opin. Biol. Ther.11(6) , 679–686 (2011).
  • Morgan D . Mechanisms of A beta plaque clearance following passive A beta immunization. Neurodegener. Dis.2(5) , 261–266 (2005).
  • Lichtlen P , MohajeriMH. Antibody-based approaches in Alzheimer‘s research: safety, pharmacokinetics, metabolism, and analytical tools. J. Neurochem.104(4) , 859–874 (2008).
  • Walsh DM , SelkoeDJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett.11(4) , 213–228 (2004).
  • Kerchner GA , BoxerAL. Bapineuzumab. Expert Opin. Biol. Ther.10(7) , 1121–1130 (2010).
  • Panza F , FrisardiV, ImbimboBP et al. Bapineuzumab: anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer‘s disease. Immunotherapy 2(6) , 767–782 (2010).
  • Panza F , FrisardiV, ImbimboBP et al. Anti-β-Amyloid immunotherapy for Alzheimer‘s disease: focus on bapineuzumab. Curr. Alzheimer Res. 8(8) , 808–817 (2011).
  • Samadi H , SultzerD. Solanezumab for Alzheimer‘s disease. Expert Opin. Biol. Ther.11(6) , 787–798 (2011).
  • Pul R , DodelR, StangelM. Antibody-based therapy in Alzheimer‘s disease. Expert Opin. Biol. Ther.11(3) , 343–357 (2011).
  • Mamikonyan G , NeculaM, MkrtichyanM et al. Anti-A beta1–11 antibody binds to different beta-amyloid species, inhibits fibril formation, and disaggregates preformed fibrils but not the most toxic oligomers. J. Biol. Chem. 282(31) , 22376–22386 (2007).
  • Bacskai BJ , KajdaszST, McLellanME et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J. Neurosci. 22(18) , 7873–7878 (2002).
  • Tamura Y , HamajimaK, MatsuiK et al. The F(ab)‘2 fragment of an Abeta-specific monoclonal antibody reduces Abeta deposits in the brain. Neurobiol. Dis. 20(2) , 541–549 (2005)
  • Johnson-Wood K , LeeM, MotterR et al. Amyloid precursor protein processing and Abeta42 deposition in a transgenic mouse model of Alzheimer‘s disease. Proc. Natl Acad. Sci. USA 94(4) , 1550–1555 (1997).
  • Black RS , SperlingRA, SafirsteinB et al. A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis. Assoc. Disord. 24(2) , 198–203 (2010).
  • Salloway S , SperlingR, GilmanS et al. A Phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73(24) , 2061–2070 (2009).
  • Rinne JO , BrooksDJ, RossorMN et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer‘s disease treated with bapineuzumab: a Phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9(4) , 363–372 (2010).
  • Rabinovici GD , JagustWJ. Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav. Neurol.21(1) , 117–128 (2009).
  • Blennow K , ZetterbergH, WeiJ, LiuE, BlackR, GrundmanM. Immunotherapy with bapineuzumab lowers CSF tau protein levels in patients with Alzheimer‘s disease. Alzheimers Dement.6(Suppl.) , S134–S135 (2010).
  • Laskowitz DT , VitekMP. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics8(8) , 959–969 (2008).
  • Kim J , BasakJM, HoltzmanDM. The role of apolipoprotein E in Alzheimer‘s disease. Neuron63(3) , 287–303 (2009).
  • Laskowitz DT , ThekdiAD, ThekdiSD et al. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp. Neurol. 167(1) , 74–85 (2001).
  • Imbimbo BP , SolfrizziV, PanzaF. Are NSAIDs useful to treat Alzheimer‘s disease or mild cognitive impairment? Front. Aging Neurosci.2 , PII19 (2010)
  • Atwood CS , BishopGM, PerryG, SmithMA. Amyloid-beta: a vascular sealant that protects against hemorrhage? J. Neurosci. Res.70(3) , 356 (2002)
  • Zhang-Nunes SX , Maat-SchiemanML, van Duinen SG, Roos RA, Frosch MP, Greenberg SM. The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol.16(1) , 30–39 (2006).
  • Pfeifer M , BoncristianoS, BondolfiL et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298(5597) , 1379 (2002).
  • Racke MM , BooneLI, HepburnDL et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhages in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyoid beta. J. Neurosci. 25(3) , 629–636 (2005).
  • Wilcock DM , JantzenPT, LiQ, MorganD, GordonMN. Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience144(3) , 950–960 (2007).
  • Boche D , ZotovaE, WellerRO et al. Consequence of Abeta immunization on the vasculature of human Alzheimer‘s disease brain. Brain 131(Pt 12) , 3299–3310 (2008).
  • Patton RL , KalbackWM, EshCL et al. Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer‘s disease patients: a biochemical analysis. Am. J. Pathol. 169(3) , 1048–1063 (2006).
  • Vellas B , BlackR, ThalLJ et al.; AN1792 (QS-21)-251 Study Team. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res.6(2) , 144–151 (2009).
  • Seubert P , Vigo-PelfreyC, EschF et al. Isolation and quantification of soluble Alzheimer‘s beta-peptide from biological fluids. Nature 359(6393) , 325–327 (1992).
  • Siemers ER , FriedrichS, DeanRA et al. Safety and changes in plasma and cerebrospinal fluid amyloid-beta after a single administration of an amyloid-beta monoclonal antibody in subjects with Alzheimer disease. Clin. Neuropharmacol. 33(2) , 67–73 (2010).
  • DeMattos RB , RackeMM, GelfanovaV et al. Identification, characterization, and comparison of amino-terminally truncated Abeta42 peptides in Alzheimer‘s disease brain tissue and in plasma from Alzheimer‘s patients receiving solanezumab immunotherapy treatment. Alzheimers Dement. 5 , P156–P157 (2009).
  • Seubert P , BarbourR, KhanK et al. Antibody capture of soluble Abeta does not reduce cortical Abeta amyloidosis in the PDAPP mouse. Neurodegener. Dis. 5(2) , 65–71 (2008).
  • DeMattos RB , BalesKR, CumminsDJ et al. Peripheral anti-Abeta antibody alters CNS and plasma Abeta clearance and decreases brain Abeta burden in a mouse model of Alzheimer‘s disease. Proc. Natl Acad. Sci. USA 98(15) , 8850–8855 (2001).
  • Dodart JC , BalesKR, GannonKS et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer‘s disease model. Nat. Neurosci. 5(5) , 452–457 (2002).
  • DeMattos RB , BalesKR, CumminsDJ et al. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer‘s disease. Science 295(5563) , 2264–2267 (2002).
  • Levites Y , SmithsonLA, PriceRW et al. Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer‘s disease mouse models. FASEB J. 20(14) , 2576–2578 (2006).
  • Yamada K , YabukiC, SeubertP et al. Abeta immunotherapy: intracerebral sequestration of Abeta by an anti-Abeta monoclonal antibody 266 with high affinity to soluble Abeta. J. Neurosci. 29(36) , 11393–11398 (2009).
  • Siemers ER , FriedrichS, DeanRA et al. P4–346: safety, tolerability and biomarker effects of an Abeta monoclonal antibody administered to patients with Alzheimer‘s disease. Alzheimers Dement. 4 , T774 (2008).
  • Racke MM , BooneLI, HepburnDL et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J. Neurosci. 25(3) , 629–636 (2005).
  • Schroeter S , KhanK, BarbourR et al. Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J. Neurosci. 28(27) , 6787–6793 (2008).
  • Nicholas T , KnebelW, GastonguayMR et al. Preliminary population pharmacokinetic modeling of PF-04360365, a humanized anti-amyloid monoclonal antibody, in patients with mild-to-moderate Alzheimer‘s disease. Alzheimers Dement. 5 , P253 (2009).
  • Watts RJ , ChenM, AtwalJ et al. Selection of an anti-Abeta antibody that binds various forms of Abeta and blocks toxicity both in vitro and in vivo. Alzheimers Dement. 5 , P426 (2009).
  • Relkin NR . Natural human antibodies targeting amyloid aggregates in intravenous immunoglobulin. Alzheimers Dement.4 , T101 (2008).
  • Dodel R , HampelH, DepboyluC et al. Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer‘s disease. Ann. Neurol. 52(2) , 253–256 (2002).
  • Du Y , DodelR, HampelH et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 57(5) , 801–805 (2001).
  • Britschgi M , OlinCE, JohnsHT et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer‘s disease. Proc. Natl Acad. Sci. USA 106(29) , 12145–12150 (2009).
  • Istrin G , BosisE, SolomonB. Intravenous immunoglobulin enhances the clearance of fibrillar amyloid-β peptide. J. Neurosci. Res.84(2) , 434–443 (2006).
  • Du Y , WeiX, DodelR et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 126(Pt 9) , 1935–1939 (2003).
  • Ma QL , LimGP, Harris-WhiteME et al. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 83(3) , 374–384 (2006).
  • Taguchi H , PlanqueS, NishiyamaY et al. Autoantibody-catalyzed hydrolysis of amyloid beta peptide. J. Biol. Chem. 283(52) , 4714–4722 (2008).
  • Fillit H , HessG, HillJ et al. Iv immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 73(3) , 180–185 (2009).
  • Kountouris D . Therapeutic effects of piracetam combined with intravenous immunoglobulin premature of Alzheimer type. J. Neural Transm.5 , 18 (2000).
  • Dodel RC , DuY, DepboyluC et al. Intravenous immunoglobulins containing antibodies against β-amyloid for the treatment of Alzheimer‘s disease. J. Neurol. Neurosurg. Psychiatry 75(10) , 1472–1474 (2004).
  • Relkin NR , SzaboP, AdamiakB et al. 18-month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol. Aging 30(11) , 1728–1736 (2009).
  • Kayed R , HeadE, ThompsonJL et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618) , 486–489 (2003).
  • Gotz J , IttnerLM. Animal models of Alzheimer‘s disease and frontotemporal dementia. Nat. Rev. Neurosci.9(7) , 532–544 (2008).
  • Meraz-Rios MA , Lira-De Leon KI, Campos-Pena V, De Anda-Hernandez MA, Mena-Lopez R. Tau oligomers and aggregation in Alzheimer‘s disease. J. Neurochem.112(6) , 1353–1367 (2010).
  • Rosenmann H , MeinerZ, GeylisV et al. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer‘s disease and healthy subjects. Neurosci. Lett. 410(2) , 90–93 (2006).
  • Solomon B . Immunological approach for the treatment of Alzheimer‘s disease. J. Mol. Neurosci.20(3) , 283–286 (2003).
  • Taniguchi S , SuzukiN, MasudaM et al. Inhibition of heparin induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 280(9) , 7614–7623 (2005).
  • Taniguchi T , SumidaM, HiraokaS et al. Effects of different anti-tau antibodies on tau fibrillogenesis: RTA-1 and RTA-2 counteract tau aggregation. FEBS Lett. 579(6) , 1399–1404 (2005).
  • von Bergen M , FriedhoffP, BiernatJ, HeberleJ, MandelkowEM, MandelkowE. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl Acad. Sci. USA97(10) , 5129–5134 (2000).
  • Boutajangout A , IngadottirJ, DaviesP, SigurdssonEM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem.118(4) , 658–667 (2011).
  • Greenberg SG , DaviesP, ScheinJD, BinderLI. Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J. Biol. Chem.267(1) , 564–569 (1992).
  • Lasagna-Reeves CA , Castillo-CarranzaDL, JacksonGR, KayedR. Tau oligomers as potential target for immunotherapy for Alzheimer disease and tauopathies. Curr. Alzheimer Res.8(6) , 659–665 (2011).
  • Billings LM , OddoS, GreenKN, McGaughJL, LaFerlaFM. Intraneuronal Abeta causes the onset of early Alzheimer‘s disease related cognitive deficits in transgenic mice. Neuron45(5) , 675–688 (2005).
  • Masliah E , RockensteinE, AdameA et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson‘s disease. Neuron 46(6) , 857–868 (2005).
  • Tampellini D , MagraneJ, TakahashiRH et al. Internalized antibodies to the Abeta domain of APP reduce neuronal Abeta and protect against synaptic alterations. J. Biol. Chem. 282(26) , 18895–18906 (2007).
  • Southwell AL , KoJ, PattersonPH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington‘s disease. J. Neurosci.29(43) , 13589–13602 (2009).
  • Roberson ED , Scearce-LevieK, PalopJJ et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer‘s disease mouse model. Science 316(5825) , 750–754 (2007).
  • Bateman RJ , SiemersER, MawuenyegaKG et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66(1) , 48–54 (2009).
  • Castellani RJ , LeeHG, SiedlakSL et al. Reexamining Alzheimer‘s disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J. Alzheimers Dis. 18(2) , 447–452 (2009).
  • Castellani RJ , LeeHG, ZhuX, NunomuraA, PerryG, SmithMA. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol.111(6) , 503–509 (2006).
  • Lee EB , LengLZ, ZhangB et al. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice. J. Biol. Chem. 281(7) , 4292–4299 (2006).
  • Lambert MP , VelascoPT, ChangL et al. Monoclonal antibodies that target pathological assemblies of Aβ. J. Neurochem. 100(1) , 23–35 (2007).
  • Dubois B , FeldmanHH, JacovaC et al. Research criteria for the diagnosis of Alzheimer‘s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8) , 734–746 (2007).
  • Dubois B , FeldmanHH, JacovaC et al. Revising the definition of Alzheimer‘s disease: a new lexicon. Lancet Neurol. 9(11) , 1118–1127 (2010).
  • McKhann GM , KnopmanDS, ChertkowH et al. The diagnosis of dementia due to Alzheimer‘s disease. Recommendations from the National Institute on Aging-Alzheimer‘s Association workgroups on diagnostic guidelines for Alzheimer‘s disease. Alzheimers Dement. 7(3) , 263–269 (2011).
  • Albert MS , DekoskyST, DicksonD et al. The diagnosis of mild cognitive impairment due to Alzheimer‘s disease. Recommendations from the National Institute on Aging-Alzheimer‘s Association workgroups on diagnostic guidelines for Alzheimer‘s disease. Alzheimers Dement. 7(3) , 270–279 (2011).
  • Sperling RA , AisenPS, BeckettLA et al. Toward defining the preclinical stages of Alzheimer‘s disease. Recommendations from the National Institute on Aging-Alzheimer‘s Association workgroups on diagnostic guidelines for Alzheimer‘s disease. Alzheimers Dement. 7(3) , 280–292 (2011).
  • Weiner MW , AisenPS, JackCR Jr et al; Alzheimer‘s Disease Neuroimaging Initiative. The Alzheimer‘s disease neuroimaging initiative. progress report and future plans. Alzheimers Dement.6(3) , 202–211 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.