176
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunotherapy Strategies for Multiple Myeloma: The Present and the Future

, , &
Pages 1005-1020 | Published online: 02 Sep 2013

References

  • Kumar SK , RajkumarSV, DispenzieriAet al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5) , 2516–2520 (2008).
  • Durie BG . Role of new treatment approaches in defining treatment goals in multiple myeloma – the ultimate goal is extended survival. Cancer Treat. Rev.36(Suppl. 2) , S18–S23 (2010).
  • Dhodapkar MV , KrasovskyJ, OsmanK, GellerMD. Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J. Exp. Med.198(11) , 1753–1757 (2003).
  • Lacy MQ , MandrekarS, DispenzieriAet al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am. J. Hematol. 84(12) , 799–802 (2009).
  • Lokhorst H , EinseleH, VesoleDet al. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J. Clin. Oncol. 28(29) , 4521–4530 (2010).
  • El-Jurdi N , ReljicT, KumarAet al. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy 5(5) , 457–466 (2013).
  • Badros A , BarlogieB, SiegelEet al. Improved outcome of allogeneic transplantation in high-risk multiple myeloma patients after nonmyeloablative conditioning. J. Clin. Oncol. 20(5) , 1295–1303 (2002).
  • Nishihori T , Ochoa-BayonaJL, KimJet al. Allogeneic hematopoietic cell transplantation for consolidation of VGPR or CR for newly diagnosed multiple myeloma. Bone Marrow Transplant doi: 10.1038/bmt.2013.37 (2013) (Epub ahead of print).
  • Kharfan-Dabaja MA , HamadaniM, ReljicTet al. Comparative efficacy of tandem autologous versus autologous followed by allogeneic hematopoietic cell transplantation in patients with newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized controlled trials. J. Hematol. Oncol. 6 , 2 (2013).
  • Van Rhee F , SzmaniaSM, ZhanFet al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 105(10) , 3939–3944 (2005).
  • Goodyear O , PiperK, KhanNet al. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood 106(13) , 4217–4224 (2005).
  • Weng J , NeelapuSS, WooAF, KwakLW. Identification of human idiotype-specific T cells in lymphoma and myeloma. Curr. Top. Microbiol. Immunol.344 , 193–210 (2011).
  • Crainie M , BelchAR, MantMJ, PilarskiLM. Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood93(5) , 1684–1696 (1999).
  • Tian E , ZhanF, WalkerRet al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl J. Med. 349(26) , 2483–2494 (2003).
  • Qian J , XieJ, HongSet al. Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 110(5) , 1587–1594 (2007).
  • Cloosen S , GratamaJ, Van Leeuwen EB et al. Cancer specific mucin-1 glycoforms are expressed on multiple myeloma. Br. J. Haematol.135(4) , 513–516 (2006).
  • Jungbluth AA , ElyS, DilibertoMet al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 106(1) , 167–174 (2005).
  • Van Duin M , BroylA, De Knegt Y et al. Cancer testis antigens in newly diagnosed and relapse multiple myeloma: prognostic markers and potential targets for immunotherapy. Haematologica96(11) , 1662–1669 (2011).
  • Atanackovic D , LuetkensT, HildebrandtYet al. Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin. Cancer Res. 15(4) , 1343–1352 (2009).
  • Lynch RG , GraffRJ, SirisinhaS, SimmsES, EisenHN. Myeloma proteins as tumor-specific transplantation antigens. Proc. Natl Acad. Sci. USA69(6) , 1540–1544 (1972).
  • Sakato N , EisenHN. Antibodies to idiotypes of isologous immunoglobulins. J. Exp. Med.141(6) , 1411–1426 (1975).
  • Yi Q , BergenbrantS, OsterborgAet al. T-cell stimulation induced by idiotypes on monoclonal immunoglobulins in patients with monoclonal gammopathies. Scand. J. Immunol. 38(6) , 529–534 (1993).
  • Li Y , BendandiM, DengYet al. Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells. Blood 96(8) , 2828–2833 (2000).
  • Wen YJ , BarlogieB, YiQ. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood97(6) , 1750–1755 (2001).
  • Menezes ME , DevineDJ, ShevdeLA, SamantRS. Dickkopf1: a tumor suppressor or metastasis promoter? Int. J. Cancer130(7) , 1477–1483 (2012).
  • Beatson RE , Taylor-PapadimitriouJ, BurchellJM. MUC1 immunotherapy. Immunotherapy2(3) , 305–327 (2010).
  • Takahashi T , MakiguchiY, HinodaYet al. Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient. J. Immunol. 153(5) , 2102–2109 (1994).
  • Greiner J , RinghofferM, TaniguchiMet al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int. J. Cancer 108(5) , 704–711 (2004).
  • Greiner J , SchmittA, GiannopoulosKet al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 95(7) , 1191–1197 (2010).
  • Schmitt M , SchmittA, RojewskiMTet al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111(3) , 1357–1365 (2008).
  • Azuma T , OtsukiT, KuzushimaK, FroelichCJ, FujitaS, YasukawaM. Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin. Cancer Res.10(21) , 7402–7412 (2004).
  • Jalili A , OzakiS, HaraTet al. Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood 106(10) , 3538–3545 (2005).
  • Chiriva-Internati M , LiuY, WeidanzJAet al. Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 102(9) , 3100–3107 (2003).
  • Erikson E , AdamT, SchmidtSet al. In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans. Proc. Natl Acad. Sci. USA108(33) , 13688–13693 (2011).
  • Van Baren N , BrasseurF, GodelaineDet al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94(4) , 1156–1164 (1999).
  • Lendvai N , GnjaticS, RitterEet al. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immun. 10 , 4 (2010).
  • Anderson LD , CookDR, YamamotoTN, BergerC, MaloneyDG, RiddellSR. Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma. Cancer Immunol. Immunother.60(7) , 985–997 (2011).
  • Curioni-Fontecedro A , KnightsAJ, TinguelyMet al. MAGE-C1/CT7 is the dominant cancer-testis antigen targeted by humoral immune responses in patients with multiple myeloma. Leukemia 22(8) , 1646–1648 (2008).
  • Li Z , LiW, MeklatFet al. A yeast two-hybrid system using Sp17 identified ropporin as a novel cancer-testis antigen in hematologic malignancies. Int. J. Cancer 121(7) , 1507–1511 (2007).
  • Chiriva-Internati M , MirandolaL, YuYet al. Cancer testis antigen, ropporin, is a potential target for multiple myeloma immunotherapy. J. Immunother. 34(6) , 490–499 (2011).
  • Nakagawa Y , AbeS, KurataMet al. IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemotherapy-induced overexpression of multidrug resistance genes. Am. J. Hematol. 81(11) , 824–831 (2006).
  • Romagnoli M , TrichetV, DavidCet al. Significant impact of survivin on myeloma cell growth. Leukemia 21(5) , 1070–1078 (2007).
  • Grube M , MoritzS, ObermannECet al. CD8+ T cells reactive to survivin antigen in patients with multiple myeloma. Clin. Cancer Res. 13(3) , 1053–1060 (2007).
  • Nagaraj S , PisarevV, KinarskyLet al. Dendritic cell-based full-length survivin vaccine in treatment of experimental tumors. J. Immunother. 30(2) , 169–179 (2007).
  • Huff CA , MatsuiW. Multiple myeloma cancer stem cells. J. Clin. Oncol.26(17) , 2895–2900 (2008).
  • Matsui W , HuffCA, WangQet al. Characterization of clonogenic multiple myeloma cells. Blood 103(6) , 2332–2336 (2004).
  • Matsui W , WangQ, BarberJPet al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 68(1) , 190–197 (2008).
  • Boucher K , ParquetN, WidenRet al. Stemness of B-cell progenitors in multiple myeloma bone marrow. Clin. Cancer Res. 18(22) , 6155–6168 (2012).
  • Maloney DG , Grillo-LopezAJ, WhiteCAet al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin‘s lymphoma. Blood 90(6) , 2188–2195 (1997).
  • Kabbinavar F , HurwitzHI, FehrenbacherLet al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21(1) , 60–65 (2003).
  • Baselga J , NortonL, AlbanellJ, KimYM, MendelsohnJ. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res.58(13) , 2825–2831 (1998).
  • Coiffier B , LepageE, BriereJet al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl J. Med. 346(4) , 235–242 (2002).
  • Richardson PG , LonialS, JakubowiakAJ, HarousseauJL, AndersonKC. Monoclonal antibodies in the treatment of multiple myeloma. Br. J. Haematol. doi:10.1111/j.1365-2141.2011.08790.x (2011) (Epub ahead of print).
  • Di Bernardo A , MacorP, GuarnottaCet al. Humoral immunotherapy of multiple myeloma: perspectives and perplexities. Expert Opin. Biol. Ther. 10(6) , 863–873 (2010).
  • Robillard N , Avet-LoiseauH, GarandRet al. CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 102(3) , 1070–1071 (2003).
  • Rawstron AC , OrfaoA, BeksacMet al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 93(3) , 431–438 (2008).
  • Treon SP , PilarskiLM, BelchARet al. CD20-directed serotherapy in patients with multiple myeloma: biologic considerations and therapeutic applications. J. Immunother. 25(1) , 72–81 (2002).
  • Moreau P , VoillatL, BenboukherLet al. Rituximab in CD20 positive multiple myeloma. Leukemia 21(4) , 835–836 (2007).
  • Baz R , FanningS, KunkelLet al. Combination of rituximab and oral melphalan and prednisone in newly diagnosed multiple myeloma. Leuk. Lymphoma 48(12) , 2338–2344 (2007).
  • Lin P , OwensR, TricotG, WilsonCS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am. J. Clin. Pathol.121(4) , 482–488 (2004).
  • de Weers M , TaiYT, Van Der Veer MS et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol.186(3) , 1840–1848 (2011).
  • Plesner T , LokhorstH, GimsingPet al. Daratumumab, a CD38 monoclonal antibody in patients with multiple myeloma-data from a dose escalation Phase I/II study. ASH Annual Meeting Abstracts. Atlanta, GA, USA, 8–12 December 2012 (Abstract 73).
  • Klein B , ZhangXG, JourdanMet al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 73(2) , 517–526 (1989).
  • Voorhees PM , MangesRF, SonneveldPet al. A Phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 161(3) , 357–366 (2013).
  • Orlowski RZ , GerchevaL, WilliamsC, et al. Phase II, randomized, double blind, placebo-controlled study comparing siltuximab plus bortezomib versus bortezomib alone in pts with relapsed/refractory multiple myeloma. J. Clin. Oncol.30 , (2012) (suppl; abstr 8018).
  • Hsi ED , SteinleR, BalasaBet al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 14(9) , 2775–2784 (2008).
  • Moreau P , RichardsonP, JakubowiakAJet al. A randomized Phase II study of elotuzumab with lenalidomide and low-dose dexamethasone in patients with relapsed/refractory multiple myeloma. J. Clin. Oncol. 30(Suppl.) , Abstract 8020 (2012).
  • Bergenbrant S , YiQ, OsterborgAet al. Modulation of anti-idiotypic immune response by immunization with the autologous M-component protein in multiple myeloma patients. Br. J. Haematol. 92(4) , 840–846 (1996).
  • Rasmussen T , HanssonL, OsterborgA, JohnsenH, MellstedtH. Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood101(11) , 4607–4610 (2003).
  • Coscia M , MarianiS, BattaglioSet al. Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 18(1) , 139–145 (2004).
  • Kuball J , De Boer K, Wagner E et al. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol. Immunother.60(2) , 161–171 (2011).
  • Kovjazin R , VolovitzI, KundelYet al. ImMucin: a novel therapeutic vaccine with promiscuous MHC binding for the treatment of MUC1-expressing tumors. Vaccine 29(29–30) , 4676–4686 (2011).
  • Tsuboi A , OkaY, NakajimaHet al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int. J. Hematol. 86(5) , 414–417 (2007).
  • Tyler EM , JungbluthAA, O‘ReillyRJ, KoehneG. WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood121(2) , 308–317 (2013).
  • Bae J , SmithR, DaleyJet al. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin. Cancer Res. 18(17) , 4850–4860 (2012).
  • Reichardt V , MilazzoC, BruggerW, EinseleH, KanzL, BrossartP. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica88(10) , 1139–1149 (2003).
  • Cull G , DurrantL, StainerC, HaynesA, RussellN. Generation of anti-idiotype immune responses following vaccination with idiotype-protein pulsed dendritic cells in myeloma. Br. J. Haematol.107(3) , 648–655 (1999).
  • Titzer S , ChristensenO, ManzkeOet al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br. J. Haematol. 108(4) , 805–816 (2000).
  • Curti A , TosiP, ComoliPet al. Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br. J. Haematol. 139(3) , 415–424 (2007).
  • Yi Q , SzmaniaS, FreemanJet al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br. J. Haematol. 150(5) , 554–564 (2010).
  • Hayashi T , HideshimaT, AkiyamaMet al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood102(4) , 1435–1442 (2003).
  • Dhodapkar MV , KrasovskyJ, OlsonK. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proc. Natl Acad. Sci. USA99(20) , 13009–13013 (2002).
  • Wen YJ , MinR, TricotG, BarlogieB, YiQ. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood99(9) , 3280–3285 (2002).
  • Hong S , LiH, QianJ, YangJ, LuY, YiQ. Optimizing dendritic cell vaccine for immunotherapy in multiple myeloma: tumour lysates are more potent tumour antigens than idiotype protein to promote anti-tumour immunity. Clin. Exp. Immunol.170(2) , 167–177 (2012).
  • Rosenblatt J , VasirB, UhlLet al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 117(2) , 393–402 (2011).
  • Milazzo C , ReichardtVL, MullerMR, GrunebachF, BrossartP. Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood101(3) , 977–982 (2003).
  • Qian J , HongS, WangSet al. Myeloma cell line-derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma. Blood 114(18) , 3880–3889 (2009).
  • Kim SK , Nguyen Pham TN, Nguyen Hoang TM et al. Induction of myeloma-specific cytotoxic T lymphocytes ex vivo by CD40-activated B cells loaded with myeloma tumor antigens. Ann. Hematol.88(11) , 1113–1123 (2009).
  • Shi J , TricotG, SzmaniaSet al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 143(5) , 641–653 (2008).
  • Garg TK , SzmaniaSM, KhanJAet al. Highly activated and expanded natural killer cells for multiple myeloma immunotherapy. Haematologica 97(9) , 1348–1356 (2012).
  • Nguyen-Pham TN , ImCM, NguyenTAet al. Induction of myeloma-specific cytotoxic T lymphocytes responses by natural killer cells stimulated-dendritic cells in patients with multiple myeloma. Leuk. Res. 35(9) , 1241–1247 (2011).
  • Noonan K , MatsuiW, SerafiniPet al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res. 65(5) , 2026–2034 (2005).
  • Noonan K , HuffCA, SproulJMet al. Phase I/II study of marrow infiltrating lymphocytes (MILs) generates measurable myeloma-specific immunity in the autologous stem cell transplant (SCT) setting. Blood 118(21) , Abstract 997 (2011).
  • Rapoport AP , StadtmauerEA, VoglDTet al. Adoptive transfer of gene-modified T-cells engineered to express high-affinity TCRs for cancer-testis antigens (CTAs) NY-ESO-1 or Lage-1, in MM patients post auto-SCT. ASH Annual Meeting Abstracts 120(21) , Abstract 472 (2012).
  • Porter DL , LevineBL, KalosM, BaggA, JuneCH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl J. Med.365(8) , 725–733 (2011).
  • Carpenter RO , EvbuomwanMO, PittalugaSet al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19(8) , 2048–2060 (2013).
  • Krummel MF , AllisonJP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182(2) , 459–465 (1995).
  • Brown RD , PopeB, YuenE, GibsonJ, JoshuaDE. The expression of T cell related costimulatory molecules in multiple myeloma. Leuk. Lymphoma31(3–4) , 379–384 (1998).
  • Murillo O , ArinaA, Hervas-StubbsSet al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin. Cancer Res. 14(21) , 6895–6906 (2008).
  • Benson DM Jr, Bakan CE, Mishra A et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood116(13) , 2286–2294 (2010).
  • Rosenblatt J , AviviI, VasirDet al. Blockade of PD-1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation. J. Am. Soc. Blood Marrow Transplant. 19(2) , S109 (2013).
  • Curiel TJ , CoukosG, ZouLet al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10(9) , 942–949 (2004).
  • Han S , WangB, CotterMJet al. Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol. Ther. 16(2) , 269–279 (2008).
  • Beyer M , KochanekM, GieseTet al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood107(10) , 3940–3949 (2006).
  • Prabhala R , NeriP, BaeJet al. Dysfunctional T regulatory cells in multiple myeloma. Blood 107(1) , 301–304 (2006).
  • Noonan K , MarchionniL, AndersonJ, PardollD, RoodmanGD, BorrelloI. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood116(18) , 3554–3563 (2010).
  • Braga WM , AtanackovicD, ColleoniGW. The role of regulatory T cells and TH17 cells in multiple myeloma. Clin. Dev. Immunol.2012 , (2012).
  • Jing W , YanX, HallettWH, GershanJA, JohnsonBD. Depletion of CD25(+) T cells from hematopoietic stem cell grafts increases posttransplantation vaccine-induced immunity to neuroblastoma. Blood117(25) , 6952–6962 (2011).
  • Kline J , BrownIE, ZhaYYet al. Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin. Cancer Res. 14(10) , 3156–3167 (2008).
  • Gorgun GT , WhitehillG, AndersonJLet al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15) , 2975–2987 (2013).
  • Zhuang J , ZhangJ, LwinSTet al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS ONE 7(11) , e48871 (2012).
  • Locke FL , MorganGJ. What is the evidence for the use of bisphosphonate therapy in newly diagnosed multiple myeloma patients lacking bone disease? Hematology Am. Soc. Hematol. Educ. Program350–353 (2012).
  • Shain KH , DaltonWS. Environmental-mediated drug resistance: a target for multiple myeloma therapy. Expert Rev. Hematol.2(6) , 649–662 (2009).
  • Mitsiades CS , MitsiadesN, MunshiNC, AndersonKC. Focus on multiple myeloma. Cancer Cell6(5) , 439–444 (2004).
  • D‘amato RJ , LoughnanMS, FlynnE, FolkmanJ. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA91(9) , 4082–4085 (1994).
  • Mitsiades N , MitsiadesCS, RichardsonPGet al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101(10) , 4055–4062 (2003).
  • Pozzi S , FulcinitiM, YanHet al. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone53(2) , 487–496 (2013).
  • Anasetti C , MuleJJ. To ablate or not to ablate? HSCs in the T cell driver‘s seat. J. Clin. Invest.117(2) , 306–310 (2007).
  • Brown IE , BlankC, KlineJ, KachaAK, GajewskiTF. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol.177(7) , 4521–4529 (2006).
  • Dudley ME , WunderlichJR, RobbinsPFet al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594) , 850–854 (2002).
  • Reichardt V , OkadaC, LisoAet al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood 93(7) , 2411–2419 (1999).
  • Liso A , Stockerl-GoldsteinK, Auffermann-GretzingerSet al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant. 6(6) , 621–627 (2000).
  • Rapoport AP , StadtmauerEA, AquiNet al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat. Med. 11(11) , 1230–1237 (2005).
  • Rapoport AP , AquiNA, StadtmauerEAet al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117(3) , 788–797 (2011).
  • Rapoport AP , AquiNA, StadtmauerEAet al. Combination immunotherapy after ASCT for multiple myeloma (MM) using MAGE-A3/poly-ICLC immunizations followed by vaccine-primed and activated autologous T-Cells. Blood 120(21) , Abstract 352 (2012).
  • Bandera A , TrabattoniD, PaceiMet al. Fully immunocompetent CD8+ T lymphocytes are present in autologous haematopoietic stem cell transplantation recipients despite an ineffectual T-helper response. PLoS ONE 3(10) , e3616 (2008).
  • Locke FL , PidalaJ, StorerBet al. The anti-CD25 antibody daclizumab delays treg reconstitution, promotes cd4 memory, and does not prevent acute or chronic gvhd after allogeneic stem cell transplantation. Blood 120(21) , Abstract 4195 (2012).
  • Sonneveld P . More force or more smart? Blood115(10) , 1859–1860 (2010).
  • Attal M , OlivierP, Cances Lauwers V. Maintenance treatment with lenalidomide after transplantation for myeloma. Analysis of secondary malignancies within the IFM 2005–2002 trial. Haematologica96(Suppl. 1) , S23 (2011).
  • McCarthy PL , OwzarK, AndersonKCet al. Phase III Intergroup study of lenalidomide versus placebo maintenance therapy following single autologous hematopoietic stem cell transplantation (AHSCT) for multiple myeloma: CALGB 10.104. Blood 116(21) , Abstract 37 (2010).
  • Mokyr MB , KalinichenkoT, GorelikL, BluestoneJA. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res.58(23) , 5301–5304 (1998).
  • Bashey A , MedinaB, CorringhamSet al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 113(7) , 1581–1588 (2009).
  • Lim S , Bailey-WoodR. Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int. J. Cancer83(2) , 215–222 (1999).
  • Yi Q , DesikanR, BarlogieB, MunshiN. Optimizing dendritic cell-based immunotherapy in multiple myeloma. Br. J. Haematol.117(2) , 297–305 (2002).
  • Röllig C , SchmidtC, BornhauserM, EhningerG, SchmitzM, Auffermann-GretzingerS. Induction of cellular immune responses in patients with stage-I multiple myeloma after vaccination with autologous idiotype-pulsed dendritic cells. J. Immunother.34(1) , 100–106 (2011).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.