531
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting the Alternatively Spliced Soluble Isoform of CTLA-4: Prospects for Immunotherapy?

, , , &
Pages 1073-1084 | Published online: 27 Nov 2014

References

  • June CH, Jackson KM, Ledbetter JA, Leiden JM, Lindsten T, Thompson CB. Two distinct mechanisms of interleukin-2 gene expression in human T lymphocytes J. Autoimmun. 2 Suppl., 55–65 (1989).
  • Ledbetter JA, Imboden JB, Schieven GL et al. CD28 ligation in T-cell activation: evidence for two signal transduction pathways. Blood 75(7), 1531–1539(1990).
  • Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 87(13), 5031–5035(1990).
  • Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 105(1), 13–21(2005).
  • Brunet JF, Denizot F, Luciani MF et al. A new member of the immunoglobulin superfamily – CTLA-4. Nature 328(6127), 267–270(1987).
  • Linsley PS, Wallace PM, Johnson J et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257(5071), 792–795(1992).
  • Lenschow DJ, Zeng Y, Thistlethwaite JR et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257(5071), 789–792(1992).
  • Harper K, Balzano C, Rouvier E, Mattei MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J. Immunol. 147(3), 1037–1044(1991).
  • Freeman GJ, Borriello F, Hodes RJ et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 262(5135), 907–909(1993).
  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5), 541–547 (1995).
  • Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270(5238), 985–988 (1995).
  • Tivol EA, Boyd SD, McKeon S et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol. 158(11), 5091–5094(1997).
  • Tivol EA, Gorski J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J. Immunol. 169(4), 1852–1858(2002).
  • Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192(2), 303–310(2000).
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192(2), 295–302(2000).
  • Manzotti CN, Tipping H, Perry LC et al. Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur. J. Immunol. 32(10), 2888–2896(2002).
  • Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899), 271–275(2008).
  • Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206(8), 1717–1725(2009).
  • Corse E, Allison JP. Cutting edge: CTLA-4 on effector T cells inhibits in trans. J. Immunol. 189(3), 1123–1127(2012).
  • Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11(12), 852–863(2011).
  • Grohmann U, Orabona C, Fallarino F et al. CTLA-4-ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3(11), 1097–1101 (2002).
  • Dejean AS, Beisner DR, Ch’en IL et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol. 10(5), 504–513(2009).
  • Qureshi OS, Zheng Y, Nakamura K et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029), 600–603(2011).
  • Schneider H, Downey J, Smith A et al. Reversal of the TCR stop signal by CTLA-4. Science 313(5795), 1972–1975(2006).
  • Lu Y, Schneider H, Rudd CE. Murine regulatory T cells differ from conventional T cells in resisting the CTLA-4 reversal of TCR stop-signal. Blood 120(23), 4560–4570(2012).
  • Verhagen J, Gabrysova L, Minaee S et al. Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc. Natl. Acad. Sci. USA 106(9), 3306–3311(2009).
  • Verhagen J, Genolet R, Britton GJ et al. CTLA-4 controls the thymic development of both conventional and regulatory T cells through modulation of the TCR repertoire. Proc. Natl. Acad. Sci. USA 110(3), E221–E230 (2013).
  • Nishikawa K, Linsley PS, Collins AB, Stamenkovic I, McCluskey RT, Andres G. Effect of CTLA-4 chimeric protein on rat autoimmune anti-glomerular basement membrane glomerulonephritis. Eur. J. Immunol. 24(6), 1249–1254(1994).
  • Blazar BR, Taylor PA, Linsley PS, Vallera DA. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 83(12), 3815–3825(1994).
  • Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 265(5176), 1225–1227(1994).
  • Knoerzer DB, Karr RW, Schwartz BD, Mengle-Gaw LJ. Collagen-induced arthritis in the BB rat. Prevention of disease by treatment with CTLA-4-ig. J. Clin. Invest. 96(2), 987–993(1995).
  • Webb LM, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur. J. Immunol. 26(10), 2320–2328(1996).
  • Abrams JR, Lebwohl MG, Guzzo CA et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103(9), 1243–1252(1999).
  • Moreland LW, Alten R, Van den Bosch F et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. 46(6), 1470–1479(2002).
  • Kremer JM, Westhovens R, Leon M et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349(20), 1907–1915(2003).
  • Ruperto N, Lovell DJ, Quartier P et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372(9636), 383–391(2008).
  • Kremer JM, Dougados M, Emery P et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a Phase IIb, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52(8), 2263–2271(2005).
  • Kremer JM, Genant HK, Moreland LW et al. Results of a two-year followup study of patients with rheumatoid arthritis who received a combination of abatacept and methotrexate. Arthritis Rheum. 58(4), 953–963(2008).
  • Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24(3), 233–238(2006).
  • Wofsy D, Hillson JL, Diamond B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 64(11), 3660–3665(2012).
  • Larsen CP, Pearson TC, Adams AB et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-ig with potent immunosuppressive. properties Am. J. Transplant. 5(3), 443–453(2005).
  • Vincenti F, Larsen C, Durrbach A et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353(8), 770–781(2005).
  • Vincenti F, Blancho G, Durrbach A et al. Five-year safety and efficacy of belatacept in renal transplantation. J. Am. Soc. Nephrol. 21(9), 1587–1596(2010).
  • Vincenti F, Larsen CP, Alberu J et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am. J. Transplant. 12(1), 210–217(2012).
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182(2), 459–465(1995).
  • Kearney ER, Walunas TL, Karr RW et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol. 155(3), 1032–1036(1995).
  • Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183(6), 2541–2550(1996).
  • Sullivan RJ, Atkins MB. Cytokine therapy in melanoma. J. Cutan. Pathol. 37(Suppl. 1), 60–67 (2010).
  • Couzin-Frankel J. Breakthrough of the year 2013. cancer immunotherapy. Science 342(6165), 1432–1433(2013).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256), 1734–1736(1996).
  • Chambers CA, Kuhns MS, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4(+) T cell responses. Proc. Natl. Acad. Sci. USA 96(15), 8603–8608(1999).
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190(3), 355–366(1999).
  • van Elsas A, Sutmuller RP, Hurwitz AA et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194(4), 481–489(2001).
  • Camacho LH, Antonia S, Sosman J et al. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 27(7), 1075–1081(2009).
  • Kirkwood JM, Lorigan P, Hersey P et al. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 16(3), 1042–1048(2010).
  • Ribas A, Kefford R, Marshall MA et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31(5), 616–622(2013).
  • Calabro L, Morra A, Fonsatti E et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, Phase 2 trial. Lancet Oncol. 14(11), 1104–1111(2013).
  • Sangro B, Gomez-Martin C, de la Mata M et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59(1), 81–88(2013).
  • Lens M, Testori A, Ferucci PF. Ipilimumab targeting CD28-CTLA-4 axis: new hope in the treatment of melanoma. Curr. Top. Med. Chem. 12(1), 61–66(2012).
  • Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723(2010).
  • Wolchok JD, Weber JS, Maio M et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in Phase II clinical trials. Ann. Oncol. 24(8), 2174–2180(2013).
  • Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210(7), 1389–1402(2013).
  • Marabelle A, Kohrt H, Sagiv-Barfi I et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123(6), 2447–2463(2013).
  • Williams EL, Dunn SN, James S et al. Immunomodulatory monoclonal antibodies combined with peptide vaccination provide potent immunotherapy in an aggressive murine neuroblastoma model. Clin. Cancer Res. 19(13), 3545–3555(2013).
  • Jensen BA, Pedersen SR, Christensen JP, Thomsen AR. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4-1BB antibodies. PLoS ONE 8(6), e66081(2013).
  • Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J. Immunother. 35(5), 385–389(2012).
  • Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am. J. Cancer Res. 4(2), 172–181(2014).
  • Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski P, Kirkwood JM. Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-alpha or TLR-9 agonist and GM-CSF with peptide vaccination. J. Immunother. 35(9), 702–710(2012).
  • Yu P, Steel JC, Zhang M et al. Simultaneous inhibition of two regulatory T-cell subsets enhanced interleukin-15 efficacy in a prostate tumor model. Proc. Natl. Acad. Sci. USA 109(16), 6187–6192(2012).
  • Page DB, Postow MA, Callahan MK, Wolchok JD. Checkpoint modulation in melanoma: an update on ipilimumab and future directions. Curr. Oncol. Rep. 15(5), 500–508(2013).
  • Simpson TR, Li F, Montalvo-Ortiz W et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210(9), 1695–1710(2013).
  • Schmidt EM, Wang CJ, Ryan GA et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J. Immunol. 182(1), 274–282(2009).
  • Laurent S, Queirolo P, Boero S et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J. Transl. Med. 11 108–5876 – 5811–5108(2013).
  • Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230–245(2014).
  • Lu Y, Schneider H, Rudd CE. Murine regulatory T cells differ from conventional T cells in resisting the CTLA-4 reversal of TCR stop-signal. Blood 120(23), 4560–4570(2012).
  • Rigby MR, Trexler AM, Pearson TC, Larsen CP. CD28/CD154 blockade prevents autoimmune diabetes by inducing nondeletional tolerance after effector T-cell inhibition and regulatory T-cell expansion. Diabetes 57(10), 2672–2683(2008).
  • Pruitt SK, Boczkowski D, de Rosa N et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur. J. Immunol. 41(12), 3553–3563(2011).
  • Wu L, Yun Z, Tagawa T, Rey-McIntyre K, de Perrot M. CTLA-4 blockade expands infiltrating T cells and inhibits cancer cell repopulation during the intervals of chemotherapy in murine mesothelioma. Mol. Cancer. Ther. 11(8), 1809–1819(2012).
  • Magistrelli G, Jeannin P, Herbault N et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur. J. Immunol. 29(11), 3596–3602(1999).
  • Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ. A native soluble form of CTLA-4. Cell. Immunol. 201(2), 144–153(2000).
  • Oaks MK, Hallett KM. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164(10), 5015–5018(2000).
  • Vijayakrishnan L, Slavik JM, Illes Z et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20(5), 563–575(2004).
  • Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol. 24, 65–97 (2006).
  • Mayans S, Lackovic K, Nyholm C et al. CT60 genotype does not affect CTLA-4 isoform expression despite association to T1D and AITD in northern Sweden. BMC Med. Genet. 8, 3 (2007).
  • Saverino D, Brizzolara R, Simone R et al. Soluble CTLA-4 in autoimmune thyroid diseases: relationship with clinical status and possible role in the immune response dysregulation. Clin. Immunol. 123(2), 190–198(2007).
  • Cao J, Zou L, Luo P, Chen P, Zhang L. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis Int. Immunopharmacol. 14(4), 585–592(2012).
  • Ip WK, Wong CK, Leung TF, Lam CW. Elevation of plasma soluble T cell costimulatory molecules CTLA-4, CD28 and CD80 in children with allergic asthma. Int. Arch. Allergy Immunol. 137(1), 45–52(2005).
  • Ip WK, Wong CK, Leung TF, Lam CW. Plasma concentrations of soluble CTLA-4, CD28, CD80 and CD86 costimulatory molecules reflect disease severity of acute asthma in children. Pediatr. Pulmonol. 41(7), 674–682(2006).
  • Wong CK, Lit LC, Tam LS, Li EK, Lam CW. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44(8), 989–994(2005).
  • Sato S, Fujimoto M, Hasegawa M et al. Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 43(10), 1261–1266(2004).
  • Wang XB, Kakoulidou M, Giscombe R et al. Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J. Neuroimmunol. 130(1–2), 224–232(2002).
  • Toussirot E, Saas P, Deschamps M et al. Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res. Ther. 11(4), R101(2009).
  • Simone R, Tenca C, Fais F et al. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression. PLoS ONE 7(9), e44654(2012).
  • Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939), 506–511(2003).
  • Purohit S, Podolsky R, Collins C et al. Lack of correlation between the levels of soluble cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and the CT-60 genotypes. J. Autoimmune Dis. 2, 8 (2005).
  • Berry A, Tector M, Oaks MK. Lack of association between sCTLA-4 levels in human plasma and common CTLA-4 polymorphisms. J. Negat. Results Biomed. 7 8–5751 – 5757–5758(2008).
  • Ward FJ, Dahal LN, Wijesekera SK et al. The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur. J. Immunol. 43(5), 1274–1285(2013).
  • Dahal LN, Hall LS, Barker RN, Ward FJ. Indoleamine 2,3 dioxygenase contributes to transferable tolerance in rat red blood cell inducible model of experimental autoimmune haemolytic anaemia. Clin. Exp. Immunol. 173(1), 58–66(2013).
  • Collins AV, Brodie DW, Gilbert RJ et al. The interaction properties of costimulatory molecules revisited. Immunity 17(2), 201–210(2002).
  • Davis SJ, Ikemizu S, Evans EJ, Fugger L, Bakker TR, van der Merwe PA. The nature of molecular recognition by T cells. Nat. Immunol. 4(3), 217–224(2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.