539
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody-Targeted Nanoparticles for Cancer Treatment

, &
Pages 941-958 | Received 14 Aug 2015, Accepted 15 Apr 2016, Published online: 06 Jul 2016

References

  • Jarboe J , GuptaA, SaifW. Therapeutic human monoclonal antibodies against cancer. In: Human Monoclonal Antibodies: Materials and Protocols. SteinitzM (Ed.). Humana Press, NY, USA, 61–77 (2014).
  • Leal M , SapraP, HurvitzSAet al. Antibody–drug conjugates: an emerging modality for the treatment of cancer. Ann. NY Acad. Sci.1321(1), 41–54 (2014).
  • Honeychurch J , CheadleEJ, DovediSJ, IllidgeTM. Immuno-regulatory antibodies for the treatment of cancer. Expert Opin. Biol. Ther.15(6), 787–801 (2015).
  • Huehls AM , CoupetTA, SentmanCL. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol.93(3), 290–296 (2014).
  • Fay F , ScottCJ. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy3(3), 381–394 (2011).
  • Mamot C , RitschardR, WickiAet al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a Phase 1 dose-escalation study. Lancet Oncol.13(12), 1234–1241 (2012).
  • Munster PN , MillerK, KropIEet al. A Phase I study of MM-302, a HER2-targeted liposomal doxorubicin, in patients with advanced, HER2-positive (HER2+) breast cancer. Presented at: ASCO Annual Meeting, June 2012. Chicago, IL, USA (2012).
  • Hrkach J , Von HoffD, AliMMet al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med.4(128), 128ra139–128ra139 (2012).
  • Bertrand N , WuJ, XuX, KamalyN, FarokhzadOC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014).
  • Chou L , MingK, ChanW. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev.40(1), 233 (2011).
  • Bleeker EaJ , De JongWH, GeertsmaREet al. Considerations on the EU definition of a nanomaterial: science to support policy making. Regul. Toxicol. Pharmacol.65(1), 119–125 (2013).
  • Kreyling WG , Semmler-BehnkeM, ChaudhryQ. A complementary definition of nanomaterial. Nano Today5(3), 165–168 (2010).
  • Auffan M , RoseJ, BotteroJ-Y, LowryGV, JolivetJ-P, WiesnerMR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol.4(10), 634–641 (2009).
  • Dobson P , JarvieH, KingS. Nanoparticle. Encyclopedia Britannica. www.britannica.com/science/nanoparticle.
  • Elzoghby AO , SamyWM, ElgindyNA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release157(2), 168–182 (2012).
  • Kumari A , YadavSK, YadavSC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B75(1), 1–18 (2010).
  • Garg T , GoyalAK. Liposomes: targeted and controlled delivery system. Drug Deliv. Lett.4(1), 62–71 (2014).
  • Mohamed S , ParayathNN, TaurinS, GreishK. Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Ther. Deliv.5(10), 1101–1121 (2014).
  • Abbasi E , AvalSF, AkbarzadehAet al. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett.9(1), 1–10 (2014).
  • Kaminskas LM , BoydBJ, PorterCJ. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine6(6), 1063–1084 (2011).
  • Mok H , ZhangM. Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin. Drug Deliv.10(1), 73–87 (2013).
  • Rosenholm JM , MamaevaV, SahlgrenC, LindénM. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine7(1), 111–120 (2012).
  • Cabral RM , BaptistaPV. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles. Expert Rev. Mol. Diagn.14(8), 1041–1052 (2014).
  • Rastogi V , YadavP, BhattacharyaSSet al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv.2014, Article ID 670815 (2014).
  • Valizadeh A , MikaeiliH, SamieiMet al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett.7(1), 1–14 (2012).
  • Sun T , ZhangYS, PangB, HyunDC, YangM, XiaY. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl.53(46), 12320–12364 (2014).
  • Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer Nanotechnology: Materials and Protocols. GrobmyerS, MoudgilB (Eds). Humana Press, NY, USA, 25–37 (2010).
  • Ye H , KarimAA, LohXJ. Current treatment options and drug delivery systems as potential therapeutic agents for ovarian cancer: a review. Mat. Sci. Eng. C Mater. Biol. Appl.45(0), 609–619 (2014).
  • Bae YH , ParkK. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release153(3), 198 (2011).
  • Bazak R , HouriM, El AchyS, KamelS, RefaatT. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol.141(5), 769–784 (2014).
  • Mccafferty J , SchofieldD. Identification of optimal protein binders through the use of large genetically encoded display libraries. Curr. Opin. Chem. Biol26, 16–24 (2015).
  • Weiner LM , SuranaR, WangS. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol.10(5), 317–327 (2010).
  • Liu P , LiZ, ZhuMet al. Preparation of EGFR monoclonal antibody conjugated nanoparticles and targeting to hepatocellular carcinoma. J. Mater. Sci. Mater. Med.21(2), 551–556 (2010).
  • Kirpotin DB , DrummondDC, ShaoYet al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res.66(13), 6732–6740 (2006).
  • Marega R , KarmaniL, FlamantLet al. Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. J. Mater. Chem.22(39), 21305–21312 (2012).
  • Karra N , NassarT, RipinAN, SchwobO, BorlakJ, BenitaS. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small9(24), 4221–4236 (2013).
  • Puertas S , MorosM, Fernández-PachecoR, IbarraM, GrazúV, De La FuenteJ. Designing novel nano-immunoassays: antibody orientation versus sensitivity. J. Phys. D Appl. Phys.43(47), 474012 (2010).
  • Sperling RA , PellegrinoT, LiJK, ChangWH, ParakWJ. Electrophoretic separation of nanoparticles with a discrete number of functional groups. Adv. Funct. Mater.16(7), 943–948 (2006).
  • Lin P-C , ChenS-H, WangK-Yet al. Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem.81(21), 8774–8782 (2009).
  • Kumar S , AaronJ, SokolovK. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc.3(2), 314–320 (2008).
  • Grüttner C , MüllerK, TellerJ, WestphalF. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int. J. Hyperthermia29(8), 777–789 (2013).
  • Grüttner C , MüllerK, TellerJ, WestphalF, ForemanA, IvkovR. Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J. Magn. Magn. Mater.311(1), 181–186 (2007).
  • Pathak S , DavidsonMC, SilvaGA. Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett.7(7), 1839–1845 (2007).
  • Aubin-Tam M-E , Hamad-SchifferliK. Structure and function of nanoparticle–protein conjugates. Biomed. Mater.3(3), 034001 (2008).
  • Wartlick H , MichaelisK, BalthasarS, StrebhardtK, KreuterJ, LangerK. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target.12(7), 461–471 (2004).
  • Steinhauser I , SpänkuchB, StrebhardtK, LangerK. Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials27(28), 4975–4983 (2006).
  • Veiseh O , GunnJW, ZhangM. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev.62(3), 284–304 (2010).
  • Thanh NT , GreenLA. Functionalisation of nanoparticles for biomedical applications. Nano Today5(3), 213–230 (2010).
  • Ghosh P , HanG, DeM, KimCK, RotelloVM. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev.60(11), 1307–1315 (2008).
  • Montenegro J-M , GrazuV, SukhanovaAet al. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev.65(5), 677–688 (2013).
  • Kao C-H , WangJ-Y, ChuangK-Het al. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles. Biomaterials35(37), 9930–9940 (2014).
  • Pham E , BirrerMJ, EliasofSet al. Translational impact of nanoparticle–drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clin. Cancer Res.21(4), 808–818 (2015).
  • Kato K , ChinK, YoshikawaTet al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs30(4), 1621–1627 (2012).
  • Libutti SK , PaciottiGF, ByrnesAAet al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res.16(24), 6139–6149 (2010).
  • Reimer P , BalzerT. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol.13(6), 1266–1276 (2003).
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg.1(1), 35–40 (2011).
  • Maier-Hauff K , UlrichF, NestlerDet al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol.103(2), 317–324 (2011).
  • Maier-Hauff K , RotheR, ScholzRet al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol.81(1), 53–60 (2007).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65(1), 36–48 (2013).
  • Von Hoff DD , ErvinT, ArenaFPet al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med.369(18), 1691–1703 (2013).
  • Senzer N , NemunaitisJ, NemunaitisDet al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther.21(5), 1096–1103 (2013).
  • Paszko E , SengeM. Immunoliposomes. Curr. Med. Chem.19(31), 5239–5277 (2012).
  • Schmid D , FayF, SmallDMet al. Efficient drug delivery and induction of apoptosis in colorectal tumors using a death receptor 5-targeted nanomedicine. Mol. Ther.22(12), 2083–2092 (2014).
  • Brown BS , PatanamT, MobliKet al. Etoposide-loaded immunoliposomes as active targeting agents for GD2-positive malignancies. Cancer Biol. Ther.15(7), 851–861 (2014).
  • Gao J , XiaY, ChenHet al. Polymer–lipid hybrid nanoparticles conjugated with anti-EGF receptor antibody for targeted drug delivery to hepatocellular carcinoma. Nanomedicine9(2), 279–293 (2013).
  • Huang X , YiC, FanYet al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater. Sci. Eng. C42, 325–332 (2014).
  • Qian C , WangY, ChenYet al. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials34(26), 6175–6184 (2013).
  • Secret E , SmithK, DubljevicVet al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Healthc. Mater.2(5), 718–727 (2013).
  • Song H , HeR, WangKet al. Anti-HIF-1α antibody-conjugated pluronic triblock copolymers encapsulated with paclitaxel for tumor targeting therapy. Biomaterials31(8), 2302–2312 (2010).
  • Heister E , NevesV, TîlmaciuCet al. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon47(9), 2152–2160 (2009).
  • Patra CR , BhattacharyaR, WangEet al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res.68(6), 1970–1978 (2008).
  • Sun B , RanganathanB, FengS-S. Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer. Biomaterials29(4), 475–486 (2008).
  • Dilnawaz F , SinghA, MohantyC, SahooSK. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials31(13), 3694–3706 (2010).
  • Gupta B , TorchilinVP. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol. Immunother.56(8), 1215–1223 (2007).
  • Elbayoumi TA , TorchilinVP. Tumor-specific anti-nucleosome antibody improves therapeutic efficacy of doxorubicin-loaded long-circulating liposomes against primary and metastatic tumor in mice. Mol. Pharm.6(1), 246–254 (2008).
  • Ma X , ChengZ, JinYet al. SM5–1-conjugated PLA nanoparticles loaded with 5-fluorouracil for targeted hepatocellular carcinoma imaging and therapy. Biomaterials35(9), 2878–2889 (2014).
  • Hu C-MJ , KaushalS, CaoHSTet al. Half-antibody functionalized lipid− polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol. Pharm.7(3), 914–920 (2010).
  • Kou G , GaoJ, WangHet al. Preparation and characterization of paclitaxel-loaded PLGA nanoparticles coated with cationic SM5–1 single-chain antibody. J. Biochem. Mol. Biol.40(5), 731–739 (2007).
  • Lu R-M , ChangY-L, ChenM-S, WuH-C. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials32(12), 3265–3274 (2011).
  • Gao J , KouG, WangHet al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res. Treat.115(1), 29–41 (2009).
  • Dan P. The role of neurotrophin receptor p75NTR in cancer. Pathways, Alomone Labs2, 13–15 (2006).
  • Dai J , JinJ, LiBet al. A chimeric SM5–1 antibody inhibits hepatocellular carcinoma cell growth and induces caspase-dependent apoptosis. Cancer Lett.258(2), 208–214 (2007).
  • Chen Y , LiuL. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev.64(7), 640–665 (2012).
  • Fujita M , LeeB-S, KhazenzonNMet al. Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly (β-L-malic acid). J. Control. Release122(3), 356–363 (2007).
  • Yu YJ , AtwalJK, ZhangYet al. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl. Med.6(261), 261ra154–261ra154 (2014).
  • Holliger P , HudsonPJ. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol.23(9), 1126–1136 (2005).
  • Widder KJ , SenyeiAE, ScarpelliDG. Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp. Biol. Med.158(2), 141–146 (1978).
  • Pankhurst QA , ConnollyJ, JonesS, DobsonJ. Applications of magnetic nanoparticles in biomedicine. J. Phys D Appl. Phys.36(13), R167 (2003).
  • Pastan I , HassanR, FitzgeraldDJ, KreitmanRJ. Immunotoxin treatment of cancer. Annu. Rev. Med.58, 221–237 (2007).
  • Barth RF , VicenteM, HarlingOKet al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol.7(146), 1–21 (2012).
  • Pan X , WuG, YangW, BarthRF, TjarksW, LeeRJ. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug. Chem.18(1), 101–108 (2007).
  • Bouras A , KaluzovaM, HadjipanayisCG. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J. Neurooncol.124(1), 13–22 (2015).
  • Kim J , WilsonDR, ZamboniCG, GreenJJ. Targeted polymeric nanoparticles for cancer gene therapy. J. Drug Target.23(7–8), 627–641 (2015).
  • Ding Y , JiangZ, SahaKet al. Gold nanoparticles for nucleic acid delivery. Mol. Ther.22(6), 1075–1083 (2014).
  • Walther W , SchlagPM. Current status of gene therapy for cancer. Curr. Opin. Oncol.25(6), 659–664 (2013).
  • Xu C-F , WangJ. Delivery systems for siRNA drug development in cancer therapy. Asian J. Pharm. Sci.10(1), 1–12 (2015).
  • Moffatt S , PapasakelariouC, WiehleS, CristianoR. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Ther.13(9), 761–772 (2006).
  • Tagawa ST , MilowskyMI, MorrisMet al. Phase II study of lutetium-177–labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res.19(18), 5182–5191 (2013).
  • Zhang K , HaoL, HurstSJ, MirkinCA. Antibody-linked spherical nucleic acids for cellular targeting. J. Am. Chem. Soc.134(40), 16488–16491 (2012).
  • Chan DP , DeleaveyGF, OwenSC, DamhaMJ, ShoichetMS. Click conjugated polymeric immuno-nanoparticles for targeted siRNA and antisense oligonucleotide delivery. Biomaterials34(33), 8408–8415 (2013).
  • Meissner JM , ToporkiewiczM, CzogallaA, MatusewiczL, KuliczkowskiK, SikorskiAF. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J. Control. Release220, 515–528 (2015).
  • Shanbhag PP , JogSV, ChogaleMM, GaikwadSS. Theranostics for cancer therapy. Curr. Drug Deliv.10(3), 357–362 (2013).
  • Kaluzova M , BourasA, MachaidzeR, HadjipanayisC. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget6(11), 8788–8806 (2015).
  • Taylor RM , SillerudLO. Paclitaxel-loaded iron platinum stealth immunomicelles are potent MRI imaging agents that prevent prostate cancer growth in a PSMA-dependent manner. Int. J. Nanomedicine7, 4341 (2012).
  • Yang J , LeeC-H, ParkJet al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J. Mater. Chem.17(26), 2695–2699 (2007).
  • Ling Y , WeiK, LuoY, GaoX, ZhongS. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials32(29), 7139–7150 (2011).
  • Srinivasan S , ManchandaR, LeiT, NagesettiA, Fernandez-FernandezA, McgoronAJ. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents – An in vitro study. J. Photochem. Photobiol. B.136(0), 81–90 (2014).
  • Parhi P , SahooSK. Trastuzumab guided nanotheranostics: a lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J. Colloid Interface Sci.451, 198–211 (2015).
  • Wu H , ShiH, ZhangHet al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials35(20), 5369–5380 (2014).
  • Menon JU , JadejaP, TambeP, VuK, YuanB, NguyenKT. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics3(3), 152–166 (2013).
  • Cavaliere R , CiocattoEC, GiovanellaBCet al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer20(9), 1351–1381 (1967).
  • Hildebrandt B , WustP, AhlersOet al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol.43(1), 33–56 (2002).
  • Hurwitz M , StaufferP. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Presented at: Seminars in OncologyDecember2014.
  • Denardo SJ , DenardoGL, NatarajanAet al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF–induced thermoablative therapy for human breast cancer in mice. J. Nucl. Med.48(3), 437–444 (2007).
  • Denardo SJ , DenardoGL, MiersLAet al. Development of tumor targeting bioprobes (111In-Chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin. Cancer Res.11(19), s7087–s7092 (2005).
  • El-Sayed IH , HuangX, El-SayedMA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239(1), 129–135 (2006).
  • Chen CH , WuY-J, ChenJ-J. Gold nanotheranostics: photothermal therapy and imaging of Mucin 7 conjugated antibody nanoparticles for urothelial cancer. BioMed. Res. Int.2015, Article ID 813632 (2015).
  • Liu T , TianJ, ChenZet al. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology25(34), 345103 (2014).
  • Huang X , El-SayedIH, QianW, El-SayedMA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.128(6), 2115–2120 (2006).
  • Glazer ES , MasseyKL, ZhuC, CurleySA. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery148(2), 319–324 (2010).
  • Glazer ES , ZhuC, MasseyKLet al. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res.16(23), 5712–5721 (2010).
  • Wang C-H , ChiouS-H, ChouC-P, ChenY-C, HuangY-J, PengC-A. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomed. Nanotech. Biol. Med.7(1), 69–79 (2011).
  • Shao N , LuS, WickstromE, PanchapakesanB. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology18(31), 315101 (2007).
  • Marches R , ChakravartyP, MusselmanIHet al. Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies. Int. J. Cancer125(12), 2970–2977 (2009).
  • Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small1(5), 482–501 (2005).
  • Hervault A , ThanhNTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale6(20), 11553–11573 (2014).
  • Simberg D , ParkJ-H, KarmaliPPet al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials30(23), 3926–3933 (2009).
  • Abdollah MR , KalberT, TolnerBet al. Prolonging the circulatory retention of SPIONs using dextran sulfate: in vivo tracking achieved by functionalisation with near-infrared dyes. Farad. Discuss.175, 41–58 (2014).
  • Baiu DC , ArtzNS, McelreathMRet al. High specificity targeting and detection of human neuroblastoma using multifunctional anti-GD2 iron-oxide nanoparticles. Nanomedicine10(19), 2973–2988 (2015).
  • Dreaden EC , AustinLA, MackeyMA, El-SayedMA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther. Deliv.3(4), 457–478 (2012).
  • Manson J , KumarD, MeenanBJ, DixonD. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull.44(2), 99–105 (2011).
  • Fabbro C , Ali-BoucettaH, Da RosT, KostarelosK, BiancoA, PratoM. Targeting carbon nanotubes against cancer. Chem. Commun.48(33), 3911–3926 (2012).
  • Kesharwani PK , MishraV, JainNK. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov. Today20(9), 1049–1060 (2015).
  • Mackowiak SA , SchmidtA, WeissVet al. Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett.13(6), 2576–2583 (2013).
  • Shao K , SinghaS, Clemente-CasaresX, TsaiS, YangY, SantamariaP. Nanoparticle-based immunotherapy for cancer. ACS Nano9(1), 16–30 (2014).
  • Steenblock ER , FadelT, LabowskyM, PoberJS, FahmyTM. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J. Biol. Chem.286(40), 34883–34892 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.