165
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Markers in Melanoma

, , , &
Pages 367-382 | Published online: 24 Nov 2015

References

  • Lian CG , MihmMCJr . Chapter 5: Skin cancer . IARC Nonserial Publication : World Cancer Report 2014 . StewartBW , WildCP ( Eds ). WHO Press , Geneva, Switzerland ( 2014 ).
  • Balch CM , GershenwaldJE , SoongSJet al. Final version of 2009 AJCC melanoma staging and classification . J. Clin. Oncol.27 ( 36 ), 6199 – 6206 ( 2009 ).
  • Tsao H , ChinL , GarrawayLA , FisherDE . Melanoma: from mutations to medicine . Genes Dev.26 ( 11 ), 1131 – 1155 ( 2012 ).
  • Shtivelman E , DaviesMQ , HwuPet al. Pathways and therapeutic targets in melanoma . Oncotarget5 ( 7 ), 1701 – 1752 ( 2014 ).
  • Miller DM , FlahertyKT , TsaoH . Current status and future directions of molecularly targeted therapies and immunotherapies for melanoma . Semin Cutan. Med. Surg.33 ( 2 ), 60 – 67 ( 2014 ).
  • Aumann S , Abdel-WahabO . Somatic alterations and dysregulation of epigenetic modifiers in cancers . Biochem. Biophys. Res. Commun.455 ( 1–2 ), 24 – 34 ( 2014 ).
  • Barrow TM , MichelsKB . Epigenetic epidemiology of cancer . Biochem. Biophys. Res. Commun.455 ( 1–2 ), 70 – 83 ( 2014 ).
  • Dhanak D , JacksonP . Development and classes of epigenetic drugs for cancer . Biochem. Biophys. Res. Commun.455 ( 1–2 ), 58 – 69 ( 2014 ).
  • Scourzic L , MoulyE , BernardOA . TET proteins and the control of cytosine demethylation in cancer . Genome Med.7 ( 1 ), 9 ( 2015 ).
  • Yang G , LuX , YuanL . LncRNA: a link between RNA and cancer . Biochim. Biophys. Acta1839 ( 11 ), 1097 – 1109 ( 2014 ).
  • Lakshmaiah KC , JacobLA , AparnaS , LokanathaD , SaldanhaSC . Epigenetic therapy of cancer with histone deacetylase inhibitors . J. Cancer Res. Ther.10 ( 3 ), 469 – 478 ( 2014 ).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA . An operational definition of epigenetics . Genes Dev.23 ( 7 ), 781 – 783 ( 2009 ).
  • Lister R , EckerJR . Finding the fifth base: genome-wide sequencing of cytosine methylation . Genome Res.19 ( 6 ), 959 – 966 ( 2009 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Costa FF . Non-coding RNAs: Lost in translation?Gene386 ( 1–2 ), 1 – 10 ( 2007 ).
  • Besaratinia A , TommasiS . Epigenetics of human melanoma: promises and challenges . J. Mol. Cell. Biol.6 ( 5 ), 356 – 367 ( 2014 ).
  • Van Den Hurk K , NiessenHE , VeeckJet al. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune . Biochim. Biophys. Acta1826 ( 1 ), 89 – 102 ( 2012 ).
  • Lee JJ , MurphyGF , LianCG . Melanoma epigenetics: Novel mechanisms, markers, and medicines . Lab. Invest.94 ( 8 ), 822 – 838 ( 2014 ).
  • Griewank KG , UgurelS , SchadendorfD , PaschenA . New developments in biomarkers for melanoma . Curr. Opin. Oncol.25 ( 2 ), 145 – 151 ( 2013 ).
  • Rodriguez-Paredes M , EstellerM . Cancer epigenetics reaches mainstream oncology . Nat. Med.17 ( 3 ), 330 – 339 ( 2011 ).
  • Kornberg RD , LorchY . Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome . Cell98 ( 3 ), 285 – 294 ( 1999 ).
  • Ye Y , JinL , WilmottJSet al. Pi(4,5)p2 5-phosphatase a regulates PI3K/AKT signalling and has a tumour suppressive role in human melanoma . Nat. Commun.4 , 1508 ( 2013 ).
  • Jazirehi AR , ArleD . Epigenetic regulation of the trail/APO2L apoptotic pathway by histone deacetylase inhibitors: an attractive approach to bypass melanoma immunotherapy resistance . Am. J. Clin. Exp. Immunol.2 ( 1 ), 55 – 74 ( 2013 ).
  • Zhang XD , GillespieSK , BorrowJM , HerseyP . The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells . Mol. Cancer Ther.3 ( 4 ), 425 – 435 ( 2004 ).
  • Osawa T , MuramatsuM , WangFet al. Increased expression of histone demethylase jhdm1d under nutrient starvation suppresses tumor growth via down-regulating angiogenesis . Proc. Natl Acad. Sci. USA108 ( 51 ), 20725 – 20729 ( 2011 ).
  • Martinez DR , RichardsHW , LinQet al. H3k79me3t80ph is a novel histone dual modification and a mitotic indicator in melanoma . J. Skin Cancer2012 , 823534 ( 2012 ).
  • Ceol CJ , HouvrasY , Jane-ValbuenaJet al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset . Nature471 ( 7339 ), 513 – 517 ( 2011 ).
  • Miura S , MaesawaC , ShibazakiMet al. Immunohistochemistry for histone h3 lysine 9 methyltransferase and demethylase proteins in human melanomas . Am. J. Dermatopathol.36 ( 3 ), 211 – 216 ( 2014 ).
  • Kostaki M , ManonaAD , StavrakaIet al. High-frequency p16(ink) (4a) promoter methylation is associated with histone methyltransferase setdb1 expression in sporadic cutaneous melanoma . Exp. Dermatol.23 ( 5 ), 332 – 338 ( 2014 ).
  • Bachmann IM , HalvorsenOJ , CollettKet al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast . J. Clin. Oncol.24 ( 2 ), 268 – 273 ( 2006 ).
  • Fan T , JiangS , ChungNet al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of P21/CDKN1A expression . Mol. Cancer Res.9 ( 4 ), 418 – 429 ( 2011 ).
  • Mchugh JB , FullenDR , MaL , KleerCG , SuLD . Expression of polycomb group protein EZH2 in nevi and melanoma . J. Cutan. Pathol.34 ( 8 ), 597 – 600 ( 2007 ).
  • Dinger ME , PangKC , MercerTR , CroweML , GrimmondSM , MattickJS . NRED: a database of long noncoding RNA expression . Nucleic Acids Res.37 ( database issue ), D122 – D126 ( 2009 ).
  • Mercer TR , MattickJS . Structure and function of long noncoding RNAs in epigenetic regulation . Nat. Struct. Mol. Biol.20 ( 3 ), 300 – 307 ( 2013 ).
  • Lian CG , MurphyGF . Diagnostic implications of loss of 5-hydroxymethylcytosine for melanoma . Expert Rev. Dermatol.8 ( 2 ), 99 – 101 ( 2013 ).
  • Bird AP . Cpg-rich islands and the function of DNA methylation . Nature321 ( 6067 ), 209 – 213 ( 1986 ).
  • Kanai Y , HirohashiS . Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state . Carcinogenesis28 ( 12 ), 2434 – 2442 ( 2007 ).
  • Jung EJ , KimIS , LeeEYet al. Comparison of methylation profiling in cancerous and their corresponding normal tissues from korean patients with breast cancer . Ann. Lab. Med.33 ( 6 ), 431 – 440 ( 2013 ).
  • Lujambio A , EstellerM . Cpg island hypermethylation of tumor suppressor miRNAs in human cancer . Cell Cycle6 ( 12 ), 1455 – 1459 ( 2007 ).
  • Sive JI , FeberA , SmithD , QuinnJ , BeckS , YongK . Global hypomethylation in myeloma is associated with poor prognosis . Br. J. Haematol. doi:10.1111/bjh.13506 ( 2015 ) ( Epub ahead of print ).
  • Hur K , CejasP , FeliuJet al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis . Gut63 ( 4 ), 635 – 646 ( 2014 ).
  • Harcharik S , BernardoS , MoskalenkoMet al. Defining the role of CD2 in disease progression and overall survival among patients with completely resected stage-II to -III cutaneous melanoma . J. Am. Acad. Dermatol.70 ( 6 ), 1036 – 1044 ( 2014 ).
  • Narayan A , JiW , ZhangXYet al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas . Int. J. Cancer77 ( 6 ), 833 – 838 ( 1998 ).
  • Qu G , DubeauL , NarayanA , YuMC , EhrlichM . Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential . Mutat. Res.423 ( 1–2 ), 91 – 101 ( 1999 ).
  • Qu GZ , GrundyPE , NarayanA , EhrlichM . Frequent hypomethylation in wilms tumors of pericentromeric DNA in chromosomes 1 and 16 . Cancer Genet. Cytogenet.109 ( 1 ), 34 – 39 ( 1999 ).
  • Hoffmann MJ , SchulzWA . Causes and consequences of DNA hypomethylation in human cancer . Biochem. Cell Biol.83 ( 3 ), 296 – 321 ( 2005 ).
  • Jones PA , BaylinSB . The fundamental role of epigenetic events in cancer . Nat. Rev Genet3 ( 6 ), 415 – 428 ( 2002 ).
  • Wong N , LamWC , LaiPB , PangE , LauWY , JohnsonPJ . Hypomethylation of chromosome 1 heterochromatin DNA correlates with Q-arm copy gain in human hepatocellular carcinoma . Am. J. Pathol.159 ( 2 ), 465 – 471 ( 2001 ).
  • Nakagawa T , KanaiY , UshijimaS , KitamuraT , KakizoeT , HirohashiS . DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas . J. Urol.173 ( 1 ), 243 – 246 ( 2005 ).
  • Wilson AS , PowerBE , MolloyPL . DNA hypomethylation and human diseases . Biochim. Biophys. Acta1775 ( 1 ), 138 – 162 ( 2007 ).
  • Worm J , ChristensenC , GronbaekK , TulchinskyE , GuldbergP . Genetic and epigenetic alterations of the APC gene in malignant melanoma . Oncogene23 ( 30 ), 5215 – 5226 ( 2004 ).
  • Liu W , LuoY , DunnJH , NorrisDA , DinarelloCA , FujitaM . Dual role of apoptosis-associated speck-like protein containing a card (asc) in tumorigenesis of human melanoma . J. Invest. Dermatol.133 ( 2 ), 518 – 527 ( 2013 ).
  • Venza M , VisalliM , BiondoCet al. Epigenetic marks responsible for cadmium-induced melanoma cell overgrowth . Toxicol. In Vitro29 ( 1 ), 242 – 250 ( 2015 ).
  • Schinke C , MoY , YuYet al. Aberrant DNA methylation in malignant melanoma . Melanoma Res.20 ( 4 ), 253 – 265 ( 2010 ).
  • Conway K , EdmistonSN , KhondkerZSet al. DNA-methylation profiling distinguishes malignant melanomas from benign nevi . Pigment Cell Melanoma Res.24 ( 2 ), 352 – 360 ( 2011 ).
  • Korabiowska M , SchlottT , SiemsNet al. Analysis of adenomatous polyposis coli gene expression, APC locus-microsatellite instability and apc promoter methylation in the progression of melanocytic tumours . Mod. Pathol.17 ( 12 ), 1539 – 1544 ( 2004 ).
  • Kreizenbeck GM , BergerAJ , SubtilA , RimmDL , Gould RothbergBE . Prognostic significance of cadherin-based adhesion molecules in cutaneous malignant melanoma . Cancer Epidemiol. Biomarkers Prev.17 ( 4 ), 949 – 958 ( 2008 ).
  • Muthusamy V , DuraisamyS , BradburyCMet al. Epigenetic silencing of novel tumor suppressors in malignant melanoma . Cancer Res.66 ( 23 ), 11187 – 11193 ( 2006 ).
  • Muthusamy V , PremiS , SoperC , PlattJ , BosenbergM . The hematopoietic stem cell regulatory gene latexin has tumor-suppressive properties in malignant melanoma . J. Invest. Dermatol.133 ( 7 ), 1827 – 1833 ( 2013 ).
  • Tsao H , GoelV , WuH , YangG , HaluskaFG . Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma . J. Invest. Dermatol.122 ( 2 ), 337 – 341 ( 2004 ).
  • Lahtz C , StranzenbachR , FiedlerE , HelmboldP , DammannRH . Methylation of PTEN as a prognostic factor in malignant melanoma of the skin . J. Invest. Dermatol.130 ( 2 ), 620 – 622 ( 2010 ).
  • Mirmohammadsadegh A , MariniA , NambiarSet al. Epigenetic silencing of the PTEN gene in melanoma . Cancer Res.66 ( 13 ), 6546 – 6552 ( 2006 ).
  • Fan J , EasthamL , VarneyMEet al. Silencing and re-expression of retinoic acid receptor beta2 in human melanoma . Pigment Cell. Melanoma Res.23 ( 3 ), 419 – 429 ( 2010 ).
  • Yi M , YangJ , ChenXet al. Rassf1a suppresses melanoma development by modulating apoptosis and cell-cycle progression . J. Cell. Physiol.226 ( 9 ), 2360 – 2369 ( 2011 ).
  • Parrillas V , Martinez-MunozL , HolgadoBLet al. Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells . Cell. Mol. Life Sci.70 ( 3 ), 545 – 558 ( 2013 ).
  • Tanemura A , TerandoAM , SimMSet al. CPG island methylator phenotype predicts progression of malignant melanoma . Clin. Cancer Res.15 ( 5 ), 1801 – 1807 ( 2009 ).
  • Hallberg AR , VorrinkSU , HudachekDRet al. Aberrant CPG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma . Epigenetics9 ( 12 ), 1641 – 1647 ( 2014 ).
  • Sigalotti L , FrattaE , BidoliEet al. Methylation levels of the “long interspersed nucleotide element-1” repetitive sequences predict survival of melanoma patients . J. Transl. Med.9 , 78 ( 2011 ).
  • Sarkar D , LeungEY , BaguleyBC , FinlayGJ , Askarian-AmiriME . Epigenetic regulation in human melanoma: past and future . Epigenetics10 ( 2 ), 103 – 121 ( 2015 ).
  • Jonsson A , TuominenR , GrafstromE , HanssonJ , EgyhaziS . High frequency of p16(INK4a) promoter methylation in nras-mutated cutaneous melanoma . J. Invest. Dermatol.130 ( 12 ), 2809 – 2817 ( 2010 ).
  • De Araujo E , MarchiFA , RodriguesTCet al. Genome-wide DNA methylation profile of leukocytes from melanoma patients with and without CDKN2A mutations . Exp. Mol. Pathol.97 ( 3 ), 425 – 432 ( 2014 ).
  • Thomas NE , SlaterNA , EdmistonSNet al. DNA methylation profiles in primary cutaneous melanomas are associated with clinically significant pathologic features . Pigment Cell Melanoma Res.27 ( 6 ), 1097 – 1105 ( 2014 ).
  • Ecsedi S , Hernandez-VargasH , LimaSCet al. DNA methylation characteristics of primary melanomas with distinct biological behaviour . PLoS ONE9 ( 5 ), e96612 ( 2014 ).
  • Hou P , LiuD , DongJ , XingM . The BRAF(v600e) causes widespread alterations in gene methylation in the genome of melanoma cells . Cell Cycle11 ( 2 ), 286 – 295 ( 2012 ).
  • Dahl C , AbildgaardC , Riber-HansenR , SteinicheT , Lade-KellerJ , GuldbergP . KIT is a frequent target for epigenetic silencing in cutaneous melanoma . J. Invest. Dermatol.135 ( 2 ), 516 – 524 ( 2015 ).
  • Song CX , HeC . Balance of DNA methylation and demethylation in cancer development . Genome Biol.13 ( 10 ), 173 ( 2012 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Xu Y , WuF , TanLet al. Genome-wide regulation of 5HMC, 5MC, and gene expression by TET1 hydroxylase in mouse embryonic stem cells . Mol Cell42 ( 4 ), 451 – 464 ( 2011 ).
  • Tan L , ShiYG . Tet family proteins and 5-hydroxymethylcytosine in development and disease . Development139 ( 11 ), 1895 – 1902 ( 2012 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Lian CG , XuY , CeolCet al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma . Cell150 ( 6 ), 1135 – 1146 ( 2012 ).
  • Larson AR , DresserKA , ZhanQet al. Loss of 5-hydroxymethylcytosine correlates with increasing morphologic dysplasia in melanocytic tumors . Mod. Pathol.27 ( 7 ), 936 – 944 ( 2014 ).
  • Hauptman N , GlavacD . Long non-coding RNA in cancer . Int. J. Mol. Sci.14 ( 3 ), 4655 – 4669 ( 2013 ).
  • Haffner MC , ChauxA , MeekerAKet al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers . Oncotarget2 ( 8 ), 627 – 637 ( 2011 ).
  • Konstandin N , BultmannS , SzwagierczakAet al. Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia . Leukemia25 ( 10 ), 1649 – 1652 ( 2011 ).
  • Kudo Y , TateishiK , YamamotoKet al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation . Cancer Sci.103 ( 4 ), 670 – 676 ( 2012 ).
  • Yang H , LiuY , BaiFet al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation . Oncogene32 ( 5 ), 663 – 669 ( 2013 ).
  • Lee JJ , GranterSR , LagaACet al. 5-hydroxymethylcytosine expression in metastatic melanoma versus nodal nevus in sentinel lymph node biopsies . Mod. Pathol.28 ( 2 ), 218 – 229 ( 2014 ).
  • Gambichler T , SandM , SkryganM . Loss of 5-hydroxymethylcytosine and ten–eleven translocation 2 protein expression in malignant melanoma . Melanoma Res.23 ( 3 ), 218 – 220 ( 2013 ).
  • Uchiyama R , UharaH , UchiyamaAet al. 5-hydroxymethylcytosine as a useful marker to differentiate between malignant melanomas and benign melanocytic nevi . J. Dermatol. Sci.73 ( 2 ), 161 – 163 ( 2014 ).
  • Eddy SR . Non-coding RNA genes and the modern RNA world . Nat. Rev. Genet.2 ( 12 ), 919 – 929 ( 2001 ).
  • Song F , AmosCI , LeeJEet al. Identification of a melanoma susceptibility locus and somatic mutation in TET2 . Carcinogenesis35 ( 9 ), 2097 – 2101 ( 2014 ).
  • Loriot A , Van TongelenA , BlancoJet al. A novel cancer-germline transcript carrying pro-metastatic miR-105 and TET-targeting miR-767 induced by DNA hypomethylation in tumors . Epigenetics9 ( 8 ), 1163 – 1171 ( 2014 ).
  • Song SJ , PolisenoL , SongMSet al. miRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling . Cell154 ( 2 ), 311 – 324 ( 2013 ).
  • Zhang P , HuangB , XuX , SessaWC . Ten–eleven translocation (TET) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a . Biochem. Biophys. Res. Commun.437 ( 3 ), 368 – 373 ( 2013 ).
  • Lin LL , WangW , HuZ , WangLW , ChangJ , QianH . Negative feedback of miR-29 family TET1 involves in hepatocellular cancer . Med. Oncol.31 ( 12 ), 291 ( 2014 ).
  • Hombach S , KretzM . The non-coding skin: Exploring the roles of long non-coding RNAs in epidermal homeostasis and disease . Bioessays35 ( 12 ), 1093 – 1100 ( 2013 ).
  • Bartel DP . microRNAs: target recognition and regulatory functions . Cell136 ( 2 ), 215 – 233 ( 2009 ).
  • Bonazzi VF , StarkMS , HaywardNK . microRNA regulation of melanoma progression . Melanoma Res.22 ( 2 ), 101 – 113 ( 2012 ).
  • Friedman EB , ShangS , De MieraEVet al. Serum miRNAs as biomarkers for recurrence in melanoma . J. Transl. Med.10 , 155 ( 2012 ).
  • Felicetti F , ErricoMC , BotteroLet al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms . Cancer Res.68 ( 8 ), 2745 – 2754 ( 2008 ).
  • Jin L , HuWL , JiangCCet al. microRNA-149*, a p53-responsive miRNA, functions as an oncogenic regulator in human melanoma . Proc. Natl Acad. Sci. USA108 ( 38 ), 15840 – 15845 ( 2011 ).
  • Streicher KL , ZhuW , LehmannKPet al. A novel oncogenic role for the miRNA-506–514 cluster in initiating melanocyte transformation and promoting melanoma growth . Oncogene31 ( 12 ), 1558 – 1570 ( 2012 ).
  • Bemis LT , ChenR , AmatoCMet al. microRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines . Cancer Res.68 ( 5 ), 1362 – 1368 ( 2008 ).
  • Haflidadottir BS , BergsteinsdottirK , PraetoriusC , SteingrimssonE . miR-148 regulates MITF in melanoma cells . PLoS ONE5 ( 7 ), e11574 ( 2010 ).
  • Dar AA , MajidS , RittsteuerCet al. The role of miR-18b in MDM2-P53 pathway signaling and melanoma progression . J. Natl Cancer Inst.105 ( 6 ), 433 – 442 ( 2013 ).
  • Reuland SN , SmithSM , BemisLTet al. MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of death domains (sodd) . J. Invest. Dermatol.133 ( 5 ), 1286 – 1293 ( 2013 ).
  • Greenberg E , HershkovitzL , ItzhakiOet al. Regulation of cancer aggressive features in melanoma cells by miRNAs . PLoS ONE6 ( 4 ), e18936 ( 2011 ).
  • Dong F , LouD . MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets . Mol. Vis.18 , 537 – 546 ( 2012 ).
  • Noguchi S , MoriT , OtsukaYet al. Anti-oncogenic miRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells . J. Biol. Chem.287 ( 15 ), 11769 – 11777 ( 2012 ).
  • Penna E , OrsoF , CiminoDet al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C . EMBO J.30 ( 10 ), 1990 – 2007 ( 2011 ).
  • Penna E , OrsoF , CiminoDet al. miR-214 coordinates melanoma progression by upregulating alcam through TFAP2 and miR-148b downmodulation . Cancer Res.73 ( 13 ), 4098 – 4111 ( 2013 ).
  • Gaziel-Sovran A , SeguraMF , Di MiccoRet al. MiR-30b/30d regulation of GALNAC transferases enhances invasion and immunosuppression during metastasis . Cancer Cell.20 ( 1 ), 104 – 118 ( 2011 ).
  • Segura MF , HannifordD , MenendezSet al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor . Proc. Natl Acad. Sci. USA106 ( 6 ), 1814 – 1819 ( 2009 ).
  • Saleiban A , FaxalvL , ClaessonK , JonssonJI , OsmanA . Mir-20b regulates expression of proteinase-activated receptor-1 (par-1) thrombin receptor in melanoma cells . Pigment Cell Melanoma Res.27 ( 3 ), 431 – 441 ( 2014 ).
  • Muller DW , BosserhoffAK . Integrin beta 3 expression is regulated by LET-7A miRNA in malignant melanoma . Oncogene27 ( 52 ), 6698 – 6706 ( 2008 ).
  • Felli N , FelicettiF , LustriAMet al. miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma . PLoS ONE8 ( 2 ), e56824 . ( 2013 ).
  • Dynoodt P , SpeeckaertR , De WeverOet al. miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells . Int. J. Oncol.42 ( 4 ), 1443 – 1451 ( 2013 ).
  • Luo C , TettehPW , MerzPRet al. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes . J. Invest. Dermatol.133 ( 3 ), 768 – 775 ( 2013 ).
  • Yamazaki H , ChijiwaT , InoueYet al. Overexpression of the miR-34 family suppresses invasive growth of malignant melanoma with the wild-type p53 gene . Exp. Ther. Med.3 ( 5 ), 793 – 796 ( 2012 ).
  • Bell RE , KhaledM , NetanelyDet al. Transcription factor/miRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1 . J. Invest. Dermatol.134 ( 2 ), 441 – 451 ( 2014 ).
  • Boyle GM , WoodsSL , BonazziVFet al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor . Pigment Cell Melanoma Res.24 ( 3 ), 525 – 537 ( 2011 ).
  • Asangani IA , HarmsPW , DodsonLet al. Genetic and epigenetic loss of miRNA-31 leads to feed-forward expression of EZH2 in melanoma . Oncotarget3 ( 9 ), 1011 – 1025 ( 2012 ).
  • Chen X , HeD , DongXDet al. microRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma . Invest. Ophthalmol. Vis. Sci.54 ( 3 ), 2248 – 2256 ( 2013 ).
  • Mazar J , DeblasioD , GovindarajanSS , ZhangS , PereraRJ . Epigenetic regulation of miRNA-375 and its role in melanoma development in humans . FEBS Lett.585 ( 15 ), 2467 – 2476 ( 2011 ).
  • Wang HF , ChenH , MaMWet al. miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule . Oncol. Rep.30 ( 1 ), 520 – 526 ( 2013 ).
  • Bhattacharya A , SchmitzU , WolkenhauerO , SchonherrM , RaatzY , KunzM . Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma . Oncogene32 ( 26 ), 3175 – 3183 ( 2013 ).
  • Pencheva N , TranH , BussCet al. Convergent multi-miRNA targeting of apoe drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis . Cell151 ( 5 ), 1068 – 1082 ( 2012 ).
  • Luo C , MerzPR , ChenYet al. Mir-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2 . Cancer Lett.341 ( 2 ), 240 – 247 ( 2013 ).
  • Mueller DW , BosserhoffAK . microRNA mir-196a controls melanoma-associated genes by regulating HOX-C8 expression . Int. J. Cancer129 ( 5 ), 1064 – 1074 ( 2011 ).
  • Forloni M , DograSK , DongYet al. miR-146a promotes the initiation and progression of melanoma by activating notch signaling . Elife3 , e01460 ( 2014 ).
  • Liu S , TetzlaffMT , CuiR , XuX . miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1 . Am. J. Pathol.181 ( 5 ), 1823 – 1835 ( 2012 ).
  • Wagenseller AG , ShadaA , D'auriaKMet al. MicroRNAs induced in melanoma treated with combination targeted therapy of temsirolimus and bevacizumab . J. Transl. Med.11 , 218 ( 2013 ).
  • Jukic DM , RaoUN , KellyLet al. MicroRNA profiling analysis of differences between the melanoma of young adults and older adults . J. Transl. Med.8 , 27 ( 2010 ).
  • Nguyen T , KuoC , NichollMBet al. Downregulation of miRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma . Epigenetics6 ( 3 ), 388 – 394 ( 2011 ).
  • Chen J , FeilotterHE , PareGCet al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma . Am. J. Pathol.176 ( 5 ), 2520 – 2529 .
  • Chen X , WangJ , ShenHet al. Epigenetics, miRNAs, and carcinogenesis: Functional role of miRNA-137 in uveal melanoma . Invest. Ophthalmol. Vis. Sci.52 ( 3 ), 1193 – 1199 ( 2011 ).
  • Xu Y , BrennT , BrownER , DohertyV , MeltonDW . Differential expression of miRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors . Br. J. Cancer106 ( 3 ), 553 – 561 ( 2012 ).
  • Mazar J , KhaitanD , DeblasioDet al. Epigenetic regulation of miRNA genes and the role of miR-34b in cell invasion and motility in human melanoma . PLoS ONE6 ( 9 ), e24922 ( 2011 ).
  • Liu S , TetzlaffMT , LiuA , Liegl-AtzwangerB , GuoJ , XuX . Loss of miRNA-205 expression is associated with melanoma progression . Lab. Invest.92 ( 7 ), 1084 – 1096 ( 2012 ).
  • Hanna JA , HahnL , AgarwalS , RimmDL . In situ measurement of miR-205 in malignant melanoma tissue supports its role as a tumor suppressor miRNA . Lab. Invest.92 ( 10 ), 1390 – 1397 ( 2012 ).
  • Gupta RA , ShahN , WangKCet al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis . Nature464 ( 7291 ), 1071 – 1076 ( 2010 ).
  • Kim K , JutooruI , ChadalapakaGet al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer . Oncogene32 ( 13 ), 1616 – 1625 ( 2013 ).
  • Tang L , ZhangW , SuB , YuB . Long noncoding RNA hotair is associated with motility, invasion, and metastatic potential of metastatic melanoma . Biomed. Res. Int.2013 , 251098 ( 2013 ).
  • Tian Y , ZhangX , HaoY , FangZ , HeY . Potential roles of abnormally expressed long noncoding RNA UCA1 and MALAT-1 in metastasis of melanoma . Melanoma Res.24 ( 4 ), 335 – 341 .
  • Zhang H , CaiK , WangJet al. miR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the emt of breast cancer stem cells by downregulating the STAT3 pathway . Stem Cells32 ( 11 ), 2858 – 2868 .
  • Flockhart RJ , WebsterDE , QuKet al. Brafv600e remodels the melanocyte transcriptome and induces bancr to regulate melanoma cell migration . Genome Res.22 ( 6 ), 1006 – 1014 ( 2012 ).
  • Li R , ZhangL , JiaLet al. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation . PLoS ONE9 ( 6 ), e100893 ( 2014 ).
  • Khaitan D , DingerME , MazarJet al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion . Cancer Res.71 ( 11 ), 3852 – 3862 ( 2011 ).
  • Pasmant E , LaurendeauI , HeronD , VidaudM , VidaudD , BiecheI . Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of anril, an antisense noncoding RNA whose expression coclusters with ARF . Cancer Res.67 ( 8 ), 3963 – 3969 ( 2007 ).
  • Burd CE , JeckWR , LiuY , SanoffHK , WangZ , SharplessNE . Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk . PLoS Genet.6 ( 12 ), e1001233 ( 2010 ).
  • Maccioni L , RachakondaPS , BermejoJLet al. Variants at the 9p21 locus and melanoma risk . BMC Cancer13 , 325 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.