263
Views
0
CrossRef citations to date
0
Altmetric
Clinical Trial Protocol

Neurostimulation for Cognitive Enhancement in Alzheimer’s Disease (the NICE-AD study): A Randomized Clinical Trial

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 277-288 | Received 19 Nov 2020, Accepted 23 Jun 2021, Published online: 09 Jul 2021

References

  • Collins FS . Stopping Alzheimer’s disease and related dementias. Bypass Budget Proposal for Fiscal Year 2018.National Institutes of Health, Washington DC, USA (2019).
  • Gebodh N , EsmaeilpourZ, AdairD, SchestattskyP, FregniF. Transcranial direct current stimulation among technologies for low-intensity transcranial electrical stimulation: classification, history, and terminology. In: Practical Guide to Transcranial Direct Current Stimulation.KnotkovaH, NitscheMA, BiksonM, WoodsAJ ( Eds). Springer Nature, NY, USA, 3–43 (2019).
  • (Ed.),ClaytonA, StevensM, RiggsA, CharvetL. Home-based patient-delivered remotely-supervised tDCS. In: Practical Guide to the Transcranial Direct Stimulation.KnotkovaH, NitscheMA, BiksonM, WoodsAJ ( Eds). Springer Nature, NY, USA, 379–406 (2019).
  • Reato D , SalvadorR, OpitzA, DmochowskiJ, MirandaPC. Principles of transcranial direct current stimulation (tDCS): introduction to biophysics of tDCS. In: Practical Guide to the Transcranial Direct Stimulation.KnotkovaH, NitscheMA, BiksonM, WoodsAJ ( Eds). Springer Nature, NY, USA, 45–80 (2019).
  • Nitsche MA , LiebetanzD, AntalA, LangN, TergauF, PaulusW. Modulation of cortical excitability by weak direct current stimulation--technical, safety and functional aspects. Suppl. Clin. Neurophysiol., 56, 255–276 (2003).
  • Liebetanz D , NitscheMA, TergauF, PaulusW. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(Pt 10), 2238–2247 (2002).
  • Keeser D , MeindlT, BorJet al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J. Neurosci., 31(43), 15284–15293 (2011).
  • Polania R , NitscheMA, PaulusW. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp., 32(8), 1236–1249 (2011).
  • Weber MJ , MessingSB, RaoH, DetreJA, Thompson-SchillSL. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study. Hum. Brain Mapp., 35(8), 3673–3686 (2014).
  • Zheng X , SchlaugG. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front. Hum. Neurosci., 9(229), 229 (2015).
  • Nitsche MA , LampeC, AntalAet al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur. J. Neurosci., 23(6), 1651–1657 (2006).
  • Nitsche MA , KuoMF, KarraschR, WachterB, LiebetanzD, PaulusW. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry, 66(5), 503–508 (2009).
  • Polania R , PaulusW, NitscheMA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum. Brain Mapp., 33(10), 2499–2508 (2012).
  • Dasilva AF , MendoncaME, ZaghiSet al. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52(8), 1283–1295 (2012).
  • Mosconi L . Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging, 32(4), 486–510 (2005).
  • Yu X , LiY, WenH, ZhangY, TianX. Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer’s disease. Neurobiol. Learn. Mem., 123, 168–178 (2015).
  • Yu SH , ParkSD, SimKC. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s disease. J. Phys. Ther. Sci., 26(2), 247–249 (2014).
  • Boggio PS , KhouryLP, MartinsDC, MartinsOE, DeMacedo EC, FregniF. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry, 80(4), 444–447 (2009).
  • Boggio PS , FerrucciR, MameliFet al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul., 5(3), 223–230 (2012).
  • Ferrucci R , MameliF, GuidiIet al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology, 71(7), 493–498 (2008).
  • Bystad M , GronliO, RasmussenIDet al. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimer’s Res. Ther., 8(1), 13 (2016).
  • Suemoto CK , ApolinarioD, Nakamura-PalaciosEMet al. Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer’s disease: a randomized, double-blind, sham-controlled trial. Brain Stimul., 7(2), 308–313 (2014).
  • Riggs A , PatelV, PaneriB, PortenoyRK, BiksonM, KnotkovaH. At-home transcranial direct current stimulation (tDCS) with telehealth support for symptom control in chronically-ill patients with multiple symptoms. Front. Behav. Neurosci., 12, 93 (2018).
  • Riggs A , PatelV, CharvetL, KasschauM, HarounianJ, KnotkovaH. Developing patient and caregiver instructional materials and training for at-home, remotely-supervised, transcranial direct current stimulation (tDCS) in seriously ill patients with multiple symptoms. Brain Stimul., 10(4), e44 (2017).
  • Knotkova H , RiggsA, PortenoyRK. Proceedings #23. A patient-tailored protocol of tDCS stimulation paired with telehealth support for at-home symptom management in seriously ill patients with multiple chronic symptoms. Brain Stimul., 10(4), e77–e78 (2017).
  • Knotkova H , RiggsA, BerishaDet al. Automatic M1-SO montage headgear for transcranial direct current stimulation (tDCS) suitable for home and high-throughput in-clinic applications. Neuromodulation, 22(8), 904–910 (2019).
  • Charvet LE , KasschauM, DattaAet al. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Front. Syst. Neurosci., 9, 26 (2015).
  • Im JJ , JeongH, BiksonMet al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul., 12(5), 1222–1228 (2019).
  • Jeste DV , PalmerBW, AppelbaumPSet al. A new brief instrument for assessing decisional capacity for clinical research. Arch. Gen. Psychiatry, 64(8), 966–974 (2007).
  • Verghese J , MalikR, ZwerlingJ. Montefiore-Einstein Center for the aging brain: preliminary data. J. Am. Geriatr. Soc., 64(11), 2374–2377 (2016).
  • Hughes CP , BergL, DanzigerWL, CobenLA, MartinRL. A new clinical scale for the staging of dementia. Br. J. Psychiatry, 140, 566–572 (1982).
  • Connor DJ , SabbaghMN. Administration and scoring variance on the ADAS-Cog. J. Alzheimers Dis., 15(3), 461–464 (2008).
  • Salthouse TA , KerstenAW. Decomposing adult age differences in symbol arithmetic. Mem. Cognit., 21(5), 699–710 (1993).
  • Lafont S , Marin-LamelletC, Paire-FicoutL, Thomas-AnterionC, LaurentB, FabrigouleC. The Wechsler Digit Symbol Substitution Test as the best indicator of the risk of impaired driving in Alzheimer disease and normal aging. Dement. Geriatr. Cogn. Disord., 29(2), 154–163 (2010).
  • Torisson G , StavenowL, MinthonL, LondosE. Reliability, validity and clinical correlates of the quality of life in Alzheimer’s disease (QoL-AD) scale in medical inpatients. Health Qual. Life Outcomes, 14, 90 (2016).
  • Van Marwijk HW , WallaceP, DeBock GH, HermansJ, KapteinAA, MulderJD. Evaluation of the feasibility, reliability and diagnostic value of shortened versions of the Geriatric Depression Scale. Br. J. Gen. Pract., 45(393), 195–199 (1995).
  • Rosen WG , MohsRC, DavisKL. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry, 141(11), 1356–1364 (1984).
  • Ihl R , FerrisS, RobertP, WinbladB, GauthierS, TennigkeitF. Detecting treatment effects with combinations of the ADAS-Cog items in patients with mild and moderate Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 27(1), 15–21 (2012).
  • Rozzini L , ChiloviBV, ContiMet al. Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. Int. J. Geriatr. Psychiatry, 22(12), 1217–1222 (2007).
  • Cheng CP , ChanSS, MakADet al. Would transcranial direct current stimulation (tDCS) enhance the effects of working memory training in older adults with mild neurocognitive disorder due to Alzheimer’s disease: study protocol for a randomized controlled trial. Trials, 16, 479 (2015).
  • Doraiswamy PM , KaiserL, BieberF, GarmanRL. The Alzheimer’s Disease Assessment Scale: evaluation of psychometric properties and patterns of cognitive decline in multicenter clinical trials of mild to moderate Alzheimer’s disease. Alzheimer Dis. Assoc. Disord., 15(4), 174–183 (2001).
  • Podhorna J , KrahnkeT, ShearM, HarrisonJE. Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Disease Assessment Scale-Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: change over time and the effect of enrichment strategies. Alzheimers Res. Ther., 8(1), 8 (2016).
  • Wang P , ZhangX, LiuYet al. Perceptual and response interference in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol, 124(12), 2389–2396 (2013).
  • Collette F , SchmidtC, ScherrerC, AdamS, SalmonE. Specificity of inhibitory deficits in normal aging and Alzheimer’s disease. Neurobiol. Aging, 30(6), 875–889 (2009).
  • Woods AJ , AntalA, BiksonMet al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol., 127(2), 1031–1048 (2016).
  • Fregni F , BoggioPS, NitscheMA, RigonattiSP, Pascual-LeoneA. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress. Anxiety, 23(8), 482–484 (2006).
  • Stern Y , HabeckC, SteffenerJet al. The reference ability neural network study: motivation, design, and initial feasibility analyses. Neuroimage, 103, 139–151 (2014).
  • Smith S , JenkinsonM, BeckmannC, MillerK, WoolrichM. Meaningful design and contrast estimability in fMRI. Neuroimage, 34(1), 127–136 (2007).
  • Jenkinson M , BeckmannCF, BehrensTE, WoolrichMW, SmithSM. FSL. Neuroimage, 62(2), 782–790 (2012).
  • Woolrich MW , JbabdiS, PatenaudeBet al. Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(Suppl. 1), S173–S186 (2009).
  • Smith SM , JenkinsonM, WoolrichMWet al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl. 1), S208–S219 (2004).
  • Beckmann CF , SmithSM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging, 23(2), 137–152 (2004).
  • Murphy K , BirnRM, BandettiniPA. Resting-state fMRI confounds and cleanup. Neuroimage, 80, 349–359 (2013).
  • Cole DM , SmithSM, BeckmannCF. Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front. Syst. Neurosci., 4, 8 (2010).
  • Fox MD , RaichleME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci., 8(9), 700–711 (2007).
  • Beckmann CF , DelucaM, DevlinJT, SmithSM. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360(1457), 1001–1013 (2005).
  • Greicius MD , SrivastavaG, ReissAL, MenonV. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA, 101(13), 4637–4642 (2004).
  • Smith SM , FoxPT, MillerKLet al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA, 106(31), 13040–13045 (2009).
  • Kelly RE Jr , AlexopoulosGS, WangZet al. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J. Neurosci. Methods, 189(2), 233–245 (2010).
  • Senn SJ . Covariate imbalance and random allocation in clinical trials. Stat. Med., 8(4), 467–475 (1989).
  • Gupta SK . Intention-to-treat concept: a review. Perspect. Clin. Res., 2(3), 109–112 (2011).
  • Unnebrink K , WindelerJ. Intention-to-treat: methods for dealing with missing values in clinical trials of progressively deteriorating diseases. Stat. Med., 20(24), 3931–3946 (2001).
  • Little R , YauL. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52(4), 1324–1333 (1996).
  • Mazumdar S , LiuKS, HouckPR, ReynoldsCF3rd. Intent-to-treat analysis for longitudinal clinical trials: coping with the challenge of missing values. J. Psychiatr. Res., 33(2), 87–95 (1999).
  • Jacobs DM , ArdMC, SalmonDP, GalaskoDR, BondiMW, EdlandSD. Potential implications of practice effects in Alzheimer’s disease prevention trials. Alzheimers Dement. (NY), 3(4), 531–535 (2017).
  • Hsu WY , KuY, ZantoTP, GazzaleyA. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol. Aging, 36(8), 2348–2359 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.