1,700
Views
2
CrossRef citations to date
0
Altmetric
Perspective

Diagnose It Yourself: Will There Be a Home Test Kit for Alzheimer’s disease?

ORCID Icon & ORCID Icon
Pages 167-176 | Received 03 Dec 2020, Accepted 05 Feb 2021, Published online: 18 Feb 2021

References

  • Prince MJ , WimoA, GuerchetMM, AliGC, WuY-T, PrinaM. World Alzheimer Report 2015 - The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends.. Alzheimers Dis. Int. (ADI)Alzheimer’s Disease International, London, UK (2015).
  • Alzheimer’s Disease International . World Alzheimer Report 2019: attitudes to dementia. Alzheimers Dis. Int. (ADI) London, UK (2019).
  • Bekris LM , YuCE, BirdTD, TsuangDW. Review article: Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol., 23(4), 213–227 (2010).
  • Corder EH , SaundersAM, StrittmatterWJet al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923 (1993).
  • Kivipelto M , MangialascheF, NganduT. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol., 14(11), 653–666 (2018).
  • Hsu D , MarshallGA. Primary and secondary prevention trials in Alzheimer disease: looking back, moving forward. Curr. Alzheimer Res., 14(4), 426–440 (2017).
  • Brookmeyer R , JohnsonE, Ziegler-GrahamK, ArrighiHM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 3(3), 186–191 (2007).
  • Blennow K , de LeonMJ, ZetterbergH. Alzheimer’s disease. Lancet, 368, 387–403 (2006).
  • Villemagne VL , BurnhamS, BourgeatPet al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol., 12(4), 357–367 (2013).
  • Jessen F , AmariglioRE, van BoxtelMet al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement., 10(6), 844–852 (2014).
  • Rönnlund M , SundströmA, AdolfssonR, NilssonLG. Subjective memory impairment in older adults predicts future dementia independent of baseline memory performance: evidence from the Betula prospective cohort study. Alzheimers Dement., 11(11), 1385–1392 (2015).
  • Albert MS , DeKoskyST, DicksonDet al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 7(3), 270–279 (2011).
  • Daneman R , PratA. The blood–brain barrier. Cold Spring Harb. Perspect. Biol., 7(1), a020412 (2015).
  • Gupta S , DhandaS, SandhirR. Anatomy and physiology of blood–brain barrier. In: Brain Targeted Drug Delivery System – A Focus on Nanotechnology and Nanoparticulates. Elsevier, Amsterdam, The Netherlands, 7–31 (2019).
  • Pardridge WM . CSF, blood–brain barrier, and brain drug delivery. Expert Opin. Drug Deliv., 13(7), 963–975 (2016).
  • Perry VH , CunninghamC, HolmesC. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol., 7(2), 161–167 (2007).
  • Heneka MT , CarsonMJ, KhouryJ Elet al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 14(4), 388–405 (2015).
  • Popp J , OikonomidiA, TautvydaitėDet al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav. Immun., 62, 203–211 (2017).
  • Schipke CG , GünterO, WeinertCet al. Definition and quantification of six immune- and neuroregulatory serum proteins in healthy and demented elderly. Neurodegener. Dis. Manag., 9(4), 193–203 (2019).
  • Ouyang M , TuD, TongLet al. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens. Bioelectron., 171, 112621 (2021).
  • Morris JC . Clinical Dementia Rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int. Psychogeriatrics, 9(Suppl. 1), 173–176 (1997).
  • Morris JC , HeymanA, MohsRCet al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165 (1989).
  • Frölich L , PetersO, LewczukPet al. Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer’s dementia. Alzheimers Res. Ther., 9(1), 84 (2017).
  • Jack CR Jr , BennettDA, BlennowKet al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 14(4), 535–562 (2018).
  • Müller EG , EdwinTH, StokkeCet al. Amyloid-β PET–correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer’s disease diagnosis in a memory clinic. PLoS ONE, 14(8), e0221365 (2019).
  • Brier MR , GordonB, FriedrichsenKet al. Tau and Ab imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Transl. Med., 8(338), 338ra66 (2016).
  • Johnson KA , FoxNC, SperlingRA, KlunkWE. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2(4), a006213 (2012).
  • Prins ND , ScheltensP. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol., 11(3), 157–165 (2015).
  • Taphoorn MJB , KleinM. Cognitive deficits in adult patients with brain tumours. Lancet Neurol., 3(3), 159–168 (2004).
  • Horvath A , SzucsA, CsuklyG, SakovicsA, StefanicsG, KamondiA. EEG and ERP biomarkers of Alzheimer’s disease: a critical review. Front. Biosci. (Landmark Ed.), 23, 183–220 (2018).
  • Freitas Pereira MLG , von ZubenA, CamargoMZ, AprahamianI, ForlenzaOV. Eye movement analysis and cognitive processing: detecting indicators of conversion to Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 10, 1273–1285 (2014).
  • Crivelli SM , GiovagnoniC, VisserenLet al. Sphingolipids in Alzheimer’s disease, how can we target them? Adv. Drug Deliv. Rev., 159, 214–231 (2020).
  • Varma VR , OommenAM, VarmaSet al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med., 15(1), e1002482 (2018).
  • Raket LL , KühnelL, SchmidtE, BlennowK, ZetterbergH, Mattsson-CarlgrenN. Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer’s disease. Alzheimers Dement. (Amst.), 12(1), e12099 (2020).
  • Karikari TK , PascoalTA, AshtonNJet al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol., 19(5), 422–433 (2020).
  • Shen X , LiJ, WangHet al. Plasma amyloid, tau, and neurodegeneration biomarker profiles predict Alzheimer’s disease pathology and clinical progression in older adults without dementia. Alzheimers Dement. (Amst.), 12(1), e12104 (2020).
  • Park JC , HanSH, YiDet al. Plasma tau/amyloid-β 1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain, 142(3), 771–786 (2019).
  • Janelidze S , MattssonN, PalmqvistSet al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med., 26(3), 379–386 (2020).
  • Palmqvist S , JanelidzeS, QuirozYTet al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA, 324(8), 772–781 (2020).
  • Rózga M , BittnerT, BatrlaR, KarlJ. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement. (Amst.), 11, 291–300 (2019).
  • Palmqvist S , JanelidzeS, StomrudEet al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol., 76(9), 1060–1069 (2019).
  • Kaneko N , NakamuraA, WashimiYet al. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 90(9), 353–364 (2014).
  • Nakamura A , KanekoN, VillemagneVLet al. High performance plasma amyloid-β biomarkers for Alzheimer’’s disease. Nature, 554(7691), 249–254 (2018).
  • Ovod V , RamseyKN, MawuenyegaKGet al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement., 13(8), 841–849 (2017).
  • Jia L , QiuQ, ZhangHet al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement., 15, 1071–1080 (2019).
  • Nabers A , PernaL, LangeJet al. Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol. Med., 10, e8763 (2018).
  • Hampel H , CaraciF, CuelloACet al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front. Immunol., 11, 456 (2020).
  • Schipke CG , MenneF, RubowS, SigleJ-P, PetersO, GrimmerT. Value of a panel of 6 serum biomarkers to differentiate between healthy controls and mild cognitive impairment due to Alzheimer disease. Alzheimer Dis. Assoc. Disord., 34(4), 318–324 (2020).
  • Hesse R , WahlerA, GummertPet al. Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1β. BMC Neurol., 16(1), 185 (2016).
  • Khalil M , TeunissenCE, OttoMet al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol., 14, 577–589 (2018).
  • Mattsson N , AndreassonU, ZetterbergHet al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol., 74(5), 557–566 (2017).
  • Mattsson N , CullenNC, AndreassonU, ZetterbergH, BlennowK. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol., 76(7), 791–799 (2019).
  • Yoo HS , JeonS, ChungSJet al. Olfactory dysfunction in Alzheimer’s disease– and Lewy body–related cognitive impairment. Alzheimers Dement., 14(10), 1243–1252 (2018).
  • Attems J , LintnerF, JellingerKA. Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J. Alzheimers Dis., 7(2), 149–157 (2005).
  • Arnold SE , LeeEB, MobergPJet al. Olfactory epithelium amyloid-β and paired helical filament-tau pathology in Alzheimer disease. Ann. Neurol., 67(4), 462–469 (2010).
  • Pellkofer H , IhlerF, WeissBGet al. Evaluation of the methoxy-X04 derivative BSC4090 for diagnosis of prodromal and early Alzheimer’s disease from bioptic olfactory mucosa. Eur. Arch. Psychiatry Clin. Neurosci., 269(8), 973–984 (2019).
  • Wolf OT , ConvitA, ThornE, DeLeon MJ. Salivary cortisol day profiles in elderly with mild cognitive impairment. Psychoneuroendocrinology, 27(7), 777–789 (2002).
  • De La Rubia Ortí JE , CastilloSS, BenllochM, RochinaMJ, ArrecheSC, García-PardoMP. Impact of the relationship of stress and the immune system in the appearance of Alzheimer’s disease. J. Alzheimers Dis., 55(3), 899–903 (2017).
  • Yilmaz A , GeddesT, HanBet al. Diagnostic biomarkers of Alzheimer’s disease as identified in saliva using 1H NMR-based metabolomics. J. Alzheimers Dis., 58(2), 355–359 (2017).
  • Tsuruoka M , HaraJ, HirayamaAet al. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis, 34(19), 2865–2872 (2013).
  • Choromańska M , KlimiukA, Kostecka-SochońPet al. Antioxidant defence, oxidative stress and oxidative damage in saliva, plasma and erythrocytes of dementia patients. Can salivary AGE be a marker of dementia? Int. J. Mol. Sci., 18(10), 2205 (2017).
  • Su H , GornitskyM, GengG, VellyAM, ChertkowH, SchipperHM. Diurnal variations in salivary protein carbonyl levels in normal and cognitively impaired human subjects. Age (Omaha), 30(1), 1–9 (2008).
  • Lee M , GuoJP, KennedyK, McgeerEG, McGeerPL. A method for diagnosing Alzheimer’s disease based on salivary amyloid-β protein 42 levels. J. Alzheimers Dis., 55(3), 1175–1182 (2017).
  • Bermejo-Pareja F , AntequeraD, VargasT, MolinaJA, CarroE. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol., 10, 108 (2010).
  • Kim C-B , ChoiYY, SongWK, SongK-B. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer’s disease pathogenic factor. J. Biomed. Opt., 19(5), 051205 (2014).
  • Shi M , SuiYT, PeskindERet al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J. Alzheimers Dis., 27(2), 299–305 (2011).
  • Lau HC , LeeIK, KoPWet al. Non-invasive screening for Alzheimer’s disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor. PLoS ONE, 10(2), e0117810 (2015).
  • Ashton NJ , IdeM, SchöllMet al. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol. Aging, 70, 125–127 (2018).
  • Fenech M , ThomasP. Telomere length in white blood cells, buccal cells and brain tissue and its variation with aging and Alzheimer’s disease. Alzheimers Dement., 6(4), S511 (2010).
  • Thomas P , O’Callaghan NJ, FenechM. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mech. Ageing Dev., 129(4), 183–190 (2008).
  • Mathur S , GlogowskaA, McAvoyEet al. Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer’s disease patients. J. Alzheimers Dis., 39(1), 35–48 (2014).
  • Garcia A , MathurS, KalawMCet al. Quantitative 3D telomeric imaging of buccal cells reveals Alzheimer’s disease-specific signatures. J. Alzheimers Dis., 58(1), 139–145 (2017).
  • François M , LeifertW, HeckerJet al. Altered cytological parameters in buccal cells from individuals with mild cognitive impairment and Alzheimer’s disease. Cytom. Part A, 85(8), 698–708 (2014).
  • François M , FenechMF, ThomasPet al. High content, multi-parameter analyses in buccal cells to identify Alzheimer’s disease. Curr. Alzheimer Res., 13(7), 787–799 (2016).
  • Garcia A , HuangD, RigholtAet al. Super-resolution structure of DNA significantly differs in buccal cells of controls and Alzheimer’s patients. J. Cell. Physiol., 232(9), 2387–2395 (2017).
  • Leifert WR , FerdoushTuli J, FrancoisMet al. Buccal cell cytokeratin 14 identifies mild cognitive impairment and Alzheimer’s disease in the AIBL study of aging. Curr. Alzheimer Res., 12(3), 233–241 (2015).
  • Hattori H , MatsumotoM, IwaiKet al. The τ protein of oral epithelium increases in Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci., 57(1), M64–70 (2002).
  • Arredondo LF , Aranda-RomoS, Rodríguez-LeyvaIet al. Tau protein in oral mucosa and cognitive state: a cross-sectional study. Front. Neurol., 8, 554 (2017).
  • Yao F , HongX, LiSet al. Urine based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J. Alzheimers Dis., 65(2), 421–431 (2018).
  • Ma L , ChenJ, WangRet al. The level of Alzheimer-associated neuronal thread protein in urine may be an important biomarker of mild cognitive impairment. J. Clin. Neurosci., 22(4), 649–652 (2015).
  • Lukiw WJ , VergalloA, ListaS, HampelH, ZhaoY. Biomarkers for Alzheimer’s disease (Ad) and the application of precision medicine. J. Pers. Med., 10(3), 138 (2020).
  • Murray ME , Graff-RadfordNR, RossOA, PetersenRC, DuaraR, DicksonDW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol., 10(9), 785–796 (2011).
  • Ferreira D , NordbergA, WestmanE. Biological subtypes of Alzheimer disease: a systematic review and meta-analysis. Neurology, 94(10), 436–448 (2020).
  • Vos SJB , VisserPJ, VerheyFet al. Variability of CSF Alzheimer’s disease biomarkers: implications for clinical practice. PLoS ONE, 9(6), e100784 (2014).
  • Mattsson N , ZetterbergH, JanelidzeSet al. Plasma tau in Alzheimer disease. Neurology, 87(17), 1827–1835 (2016).
  • Bolstad N , WarrenDJ, NustadK. Heterophilic antibody interference in immunometric assays. Best Pract. Res. Clin. Endocrinol. Metab., 27(5), 647–661 (2013).
  • Sehlin D , SöllvanderS, PaulieSet al. Interference from heterophilic antibodies in amyloid-β oligomer ELISAs. J. Alzheimers Dis., 21, 1295–1301 (2010).
  • Fink HA , LinskensEJ, SilvermanPCet al. Accuracy of biomarker testing for neuropathologically defined Alzheimer disease in older adults with dementia. Ann. Intern. Med., 172(10), 669–677 (2020).
  • Ferretti MT , IulitaMF, CavedoEet al. Sex differences in Alzheimer disease – the gateway to precision medicine. Nat. Rev. Neurol., 14(8), 457–469 (2018).
  • Sjögren M , VandersticheleH, ÅgrenHet al. Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: establishment of reference values. Clin. Chem., 47(10), 1776–1781 (2001).
  • Yilmaz A , BlennowK, HagbergLet al. Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev. Mol. Diagn., 17(8), 761–770 (2017).
  • Sørensen K , PelikanJM, RöthlinFet al. Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU). Eur. J. Public Health, 25(6), 1053–1058 (2015).
  • Delaney KP , BransonBM, UniyalAet al. Performance of an oral fluid rapid HIV-1/2 test: experience from four CDC studies. AIDS, 20(12), 1655–1660 (2006).
  • Pantzar A , AttiAR, FratiglioniL, FastbomJ, BäckmanL, LaukkaEJ. Cognitive performance in unipolar old-age depression: a longitudinal study. Int. J. Geriatr. Psychiatry, 32(6), 675–684 (2017).