552
Views
0
CrossRef citations to date
0
Altmetric
Review

Magnetic nanoparticles-based Drug and Gene Delivery Systems for the Treatment of Pulmonary Diseases

, , , &
Pages 387-402 | Received 24 Sep 2016, Accepted 09 Dec 2016, Published online: 12 Jan 2017

References

  • Yoo J-W Doshi N Mitragotri S . Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery . Adv. Drug Del. Rev.63 ( 14 ), 1247 – 1256 ( 2011 ).
  • Bucak S Sezer AD Yavuztürk B . Magnetic nanoparticles: synthesis, surface modifications and application in drug delivery . In : Recent Advances in Novel Drug Carrier Systems . SezerAD ( Ed. ). InTech ( 2012 ).
  • Mahmoudi M Simchi A Imani M Milani AS Stroeve P . An in vitro study of bare and poly (ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure . Nanotechnology20 ( 22 ), 225104 ( 2009 ).
  • Arruebo M Fernández-Pacheco R Ibarra MR Santamaría J . Magnetic nanoparticles for drug delivery . Nano Today2 ( 3 ), 22 – 32 ( 2007 ).
  • Chen G Yang C Prasad PN . Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up-and down-conversion in lanthanide-doped nanoparticles . Acc. Chem. Res.46 ( 7 ), 1474 – 1486 ( 2013 ).
  • Zhou J Liu Z Li F . Upconversion nanophosphors for small-animal imaging . Chem. Soc. Rev.41 ( 3 ), 1323 – 1349 ( 2012 ).
  • Fan W Shen B Bu W et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging . J. Am. Chem. Soc.135 ( 17 ), 6494 – 6503 ( 2013 ).
  • Estelrich J Escribano E Queralt J Busquets MA . Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery . Int. J. Mol. Sci.16 ( 4 ), 8070 – 8101 ( 2015 ).
  • Wust P Hildebrandt B Sreenivasa G et al. Hyperthermia in combined treatment of cancer . Lancet Oncol.3 ( 8 ), 487 – 497 ( 2002 ).
  • Gao J Gu H Xu B . Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications . Acc. Chem. Res.42 ( 8 ), 1097 – 1107 ( 2009 ).
  • Lu X Zhu T Chen C Liu Y . Right or left: the role of nanoparticles in pulmonary diseases . Int. J. Mol. Sci.15 ( 10 ), 17577 – 17600 ( 2014 ).
  • Han S Liu Y Nie X et al. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly (L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles . Small8 ( 10 ), 1596 – 1606 ( 2012 ).
  • Kumar M Kong X Behera AK Hellermann GR Lockey RF Mohapatra SS . Chitosan IFN-γ-pDNA nanoparticle (CIN) therapy for allergic asthma . Genet. Vaccines Ther.1 ( 1 ), 1 ( 2003 ).
  • Pandey R Sharma A Zahoor A Sharma S Khuller G Prasad B . Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis . J. Antimicrob. Chemother.52 ( 6 ), 981 – 986 ( 2003 ).
  • Kim J-E Shin J-Y Cho M-H . Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects . Arch. Toxicol.86 ( 5 ), 685 – 700 ( 2012 ).
  • Gil PR Hühn D Loretta L Sasse D Parak WJ . Nanopharmacy: inorganic nanoscale devices as vectors and active compounds . Pharmacol. Res.62 ( 2 ), 115 – 125 ( 2010 ).
  • Winer JL Liu CY Apuzzo ML . The use of nanoparticles as contrast media in neuroimaging: a statement on toxicity . World Neurosurg.78 ( 6 ), 709 – 711 ( 2012 ).
  • Wada S Yue L Tazawa K et al. New local hyperthermia using dextran magnetite complex (DM) for oral cavity: experimental study in normal hamster tongue . Oral Dis.7 ( 3 ), 192 – 195 ( 2001 ).
  • Jung CW Jacobs P . Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil . Magn. Reson. Imaging13 ( 5 ), 661 – 674 ( 1995 ).
  • Mahmoudi M Simchi A Milani A Stroeve P . Cell toxicity of superparamagnetic iron oxide nanoparticles . J. Colloid Interface Sci.336 ( 2 ), 510 – 518 ( 2009 ).
  • Seabra AB PasquôTo T Ferrarini ACF Santos MDC Haddad PS De Lima R . Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated-and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment . Chem. Res. Toxicol.27 ( 7 ), 1207 – 1218 ( 2014 ).
  • Yaaghoobi M Emtiazi G Roghanian R . A novel approach for aerobic construction of iron oxide nanoparticles by acinetobacter radioresistens and their effects on red blood cells . Curr. Nanosci.8 ( 2 ), 286 – 291 ( 2012 ).
  • Seabra AB Haddad PS . Cytotoxicity and genotoxicity of iron oxides nanoparticles . In : Nanotoxicology . DuránNGuterresSSAlvesOL ( Eds ). Springer , NY, USA , 265 – 279 ( 2014 ).
  • Lee K-J An J-H Shin J-S Kim D-H Yoo H-S Cho C-K . Biostability of γ-Fe 2 O 3 nano particles evaluated using an in vitro cytotoxicity assays on various tumor cell lines . Curr. Appl. Phys.11 ( 3 ), 467 – 471 ( 2011 ).
  • Salunkhe AB Khot VM Pawar S . Magnetic hyperthermia with magnetic nanoparticles: a status review . Curr. Top. Med. Chem.14 ( 5 ), 572 – 594 ( 2014 ).
  • Elsherbini AA Saber M Aggag M El-Shahawy A Shokier HA . Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging . Magn. Reson. Imaging29 ( 2 ), 272 – 280 ( 2011 ).
  • Hervault A Thanh NTK . Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer . Nanoscale6 ( 20 ), 11553 – 11573 ( 2014 ).
  • Siemann DW . The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents . Cancer Treat. Rev.37 ( 1 ), 63 – 74 ( 2011 ).
  • Schlemmer M Lindner L Abdel-Rahman S Issels R . [Principles, technology and indication of hyperthermia and part body hyperthermia] . Der Radiologe44 ( 4 ), 301 – 309 ( 2004 ).
  • Phillips JL . A topical review of magnetic fluid hyperthermia . Journal of Science and Health at the University of Alabama3 , 14 – 18 ( 2005 ).
  • Vallejo-Fernandez G Whear O Roca A et al. Mechanisms of hyperthermia in magnetic nanoparticles . J. Phys. D Appl. Phys.46 ( 31 ), 312001 ( 2013 ).
  • Carrey J Mehdaoui B Respaud M . Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization . J. Appl. Phys.109 ( 8 ), 083921 ( 2011 ).
  • Gonzales-Weimuller M Zeisberger M Krishnan KM . Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia . J. Magn. Magn. Mater.321 ( 13 ), 1947 – 1950 ( 2009 ).
  • Bañobre-López M Teijeiro A Rivas J . Magnetic nanoparticle-based hyperthermia for cancer treatment . Rep. Pract. Oncol. Radiother.18 ( 6 ), 397 – 400 ( 2013 ).
  • Hergt R Dutz S Müller R Zeisberger M . Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy . J. Phys.: Condens. Matter18 ( 38 ), S2919 ( 2006 ).
  • Pankhurst QA Connolly J Jones SK Dobson J . Applications of magnetic nanoparticles in biomedicine . J. Phys. D Appl. Phys.36 ( 13 ), R167 ( 2003 ).
  • Brusentsov NA Brusentsova TN Filinova EY et al. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors . J. Magn. Magn. Mater.311 ( 1 ), 176 – 180 ( 2007 ).
  • Brusentsov N Polyanskii V Pirogov YA et al. Antitumor effects of the combination of magnetohydrodynamic thermochemotherapy and magnetic resonance tomography . Pharm. Chem. J.44 ( 6 ), 291 – 295 ( 2010 ).
  • Cherukuri P Glazer ES Curley SA . Targeted hyperthermia using metal nanoparticles . Adv. Drug Del. Rev.62 ( 3 ), 339 – 345 ( 2010 ).
  • Nedelcu G . Magnetic nanoparticles impact on tumoral cells in the treatment by magnetic fluid hyperthermia . Dig. J. Nanomater. Biostruct.3 ( 3 ), 103 – 107 ( 2008 ).
  • Sharifi I Shokrollahi H Amiri S . Ferrite-based magnetic nanofluids used in hyperthermia applications . J. Magn. Magn. Mater.324 ( 6 ), 903 – 915 ( 2012 ).
  • Jakus A . Synthesis and Characterization of Multifunctional Magnetic Nanoparticles for Treatment of Cystic Fibrosis . National Nanotechnology Infrastructure Network , 18 – 19 ( 2008 ). http://www.nnin.org/sites/default/files/files/2008NNINreuJAKUS.pdf .
  • Kasahara N Dozy AM Kan YW . Tissue-specific targeting of retroviral vectors through ligand-receptor interactions . Science266 ( 5189 ), 1373 – 1376 ( 1994 ).
  • Arruebo M . Drug delivery from structured porous inorganic materials . Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.4 ( 1 ), 16 – 30 ( 2012 ).
  • Mccarthy JR Kelly KA Sun EY Weissleder R . Targeted delivery of multifunctional magnetic nanoparticles . Nanomedicine (Lond.)2 ( 2 ), 153 – 167 ( 2007 ).
  • Peng X-H Qian X Mao H et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy . Int. J. Nanomedicine3 ( 3 ), 311 – 321 ( 2008 ).
  • Fernández-Pacheco R Marquina C Valdivia JG et al. Magnetic nanoparticles for local drug delivery using magnetic implants . J. Magn. Magn. Mater.311 ( 1 ), 318 – 322 ( 2007 ).
  • Roca A Wiese B Timmis J Vallejo-Fernandez G O'grady K . Effect of frequency and field amplitude in magnetic hyperthermia . IEEE Trans. Magn.48 ( 11 ), 4054 – 4057 ( 2012 ).
  • Brandt YI Armijo LM Rivera AC et al. Effectiveness of tobramycin conjugated to iron oxide nanoparticles in treating infection in cystic fibrosis . Proceedings of: SPIE BiOS . San Francisco, CA, USA , 2–3 February 2013 .
  • Dolovich MB Dhand R . Aerosol drug delivery: developments in device design and clinical use . Lancet377 ( 9770 ), 1032 – 1045 ( 2011 ).
  • Hua X Tan S Bandara H Fu Y Liu S Smyth HD . Externally controlled triggered-release of drug from PLGA micro and nanoparticles . PLoS ONE9 ( 12 ), e114271 ( 2014 ).
  • Hu S Chen Y Liu T Tung T Liu D Chen S . Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release . Chem. Commun. (Camb.)47 ( 6 ), 1776 – 1778 ( 2011 ).
  • Dobson J . Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery . Gene Ther.13 ( 4 ), 283 – 287 ( 2006 ).
  • Scherer F Anton M Schillinger U et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo . Gene Ther.9 ( 2 ), 102 – 109 ( 2002 ).
  • Nayerossadat N Maedeh T Ali PA . Viral and nonviral delivery systems for gene delivery . Adv. Biomed. Res.1 ( 1 ), 27 ( 2012 ).
  • Morishita N Nakagami H Morishita R et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector . Biochem. Biophys. Res. Commun.334 ( 4 ), 1121 – 1126 ( 2005 ).
  • Shaw AT Yeap BY Mino-Kenudson M et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK . J. Clin. Oncol.27 ( 26 ), 4247 – 4253 ( 2009 ).
  • Edwards BK Noone AM Mariotto AB et al. Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer . Cancer120 ( 9 ), 1290 – 1314 ( 2014 ).
  • Dowell JE . Small cell lung cancer: are we making progress?Am. J. Med. Sci.339 ( 1 ), 68 – 76 ( 2010 ).
  • Desantis CE Lin CC Mariotto AB et al. Cancer treatment and survivorship statistics, 2014 . CA Cancer J. Clin.64 ( 4 ), 252 – 271 ( 2014 ).
  • Hildebrandt B Wust P Ahlers O et al. The cellular and molecular basis of hyperthermia . Crit. Rev. Oncol.43 ( 1 ), 33 – 56 ( 2002 ).
  • Denardo GL Denardo SJ . Update: turning the heat on cancer . Cancer Biother. Radiopharm.23 ( 6 ), 671 – 680 ( 2008 ).
  • Cividalli A Cruciani G Livdi E Pasqualetti P Danesi DT . Hyperthermia enhances the response of paclitaxel and radiation in a mouse adenocarcinoma . Int. J. Radiat. Oncol. Biol. Phys.44 ( 2 ), 407 – 412 ( 1999 ).
  • Vidair C Doxsey S Dewey W . Heat shock alters centrosome organization leading to mitotic dysfunction and cell death . J. Cell. Physiol.154 ( 3 ), 443 – 455 ( 1993 ).
  • Ahmed K Zaidi SF . Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis . J. Pak. Med. Assoc.63 ( 4 ), 504 – 508 ( 2013 ).
  • Sadhukha T Wiedmann TS Panyam J . Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy . Biomaterials34 ( 21 ), 5163 – 5171 ( 2013 ).
  • Iwakiri S Sonobe M Nagai S Hirata T Wada H Miyahara R . Expression status of folate receptor α is significantly correlated with prognosis in non-small-cell lung cancers . Ann. Surg. Oncol.15 ( 3 ), 889 – 899 ( 2008 ).
  • Shuyuli SH Peng S-B . Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression . Int. J. Oncol.27 , 1329 – 1339 ( 2005 ).
  • Yin M Guan X Liao Z Wei Q . Insulin-like growth factor-1 receptor-targeted therapy for non-small cell lung cancer: a mini review . Am. J. Transl. Res.1 ( 2 ), 101 – 114 ( 2009 ).
  • Ulbrich K Holá KI ŠUbr V Bakandritsos A TučEk JI ZbořIl R . Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies . Chem. Rev.116 ( 9 ), 5338 – 5431 ( 2016 ).
  • Assaraf YG Leamon CP Reddy JA . The folate receptor as a rational therapeutic target for personalized cancer treatment . Drug Resist. Updat.17 ( 4 ), 89 – 95 ( 2014 ).
  • Le Droumaguet B Nicolas J Brambilla D et al. Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer's disease . ACS Nano6 ( 7 ), 5866 – 5879 ( 2012 ).
  • Mendelsohn J Baselga J . The EGF receptor family as targets for cancer therapy . Oncogene19 ( 56 ), 6550 – 6565 ( 2000 ).
  • Tai W Mahato R Cheng K . The role of HER2 in cancer therapy and targeted drug delivery . J. Control. Release146 ( 3 ), 264 – 275 ( 2010 ).
  • Daniels TR Delgado T Rodriguez JA Helguera G Penichet ML . The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer . Clin. Immunol.121 ( 2 ), 144 – 158 ( 2006 ).
  • Taylor K Howard CB Jones ML et al. Nanocell targeting using engineered bispecific antibodies . mAbs7 ( 1 ), 53 – 65 ( 2015 ).
  • Gilchrist R Medal R Shorey WD Hanselman RC Parrott JC Taylor CB . Selective inductive heating of lymph nodes . Ann. Surg.146 ( 4 ), 596 ( 1957 ).
  • Hauser AK Anderson KW Hilt JZ . Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells . Nanomedicine11 ( 14 ), 1769 – 1785 ( 2016 ).
  • Kehrer JP . The Haber-Weiss reaction and mechanisms of toxicity . Toxicology149 ( 1 ), 43 – 50 ( 2000 ).
  • Lage H Jordan A Scholz R Dietel M . Thermosensitivity of multidrug-resistant human gastric and pancreatic carcinoma cells . Int. J. Hyperthermia16 ( 4 ), 291 – 303 ( 2000 ).
  • Jordan A Scholz R Maier-Hauff K et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia . J. Magn. Magn. Mater.225 ( 1 ), 118 – 126 ( 2001 ).
  • Jordan A Scholz R Wust P Fähling H Felix R . Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles . J. Magn. Magn. Mater.201 ( 1 ), 413 – 419 ( 1999 ).
  • Jordan A Scholz R Maier-Hauff K et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma . J. Neurooncol.78 ( 1 ), 7 – 14 ( 2006 ).
  • Torres-Lugo M Rinaldi C . Thermal potentiation of chemotherapy by magnetic nanoparticles . Nanomedicine8 ( 10 ), 1689 – 1707 ( 2013 ).
  • Wagstaff AJ Brown SD Holden MR et al. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields . Inorg. Chim. Acta393 , 328 – 333 ( 2012 ).
  • Falqueiro A Primo F Morais P Mosiniewicz-Szablewska E Suchocki P Tedesco A . Selol-loaded magnetic nanocapsules: a new approach for hyperthermia cancer therapy . J. Appl. Phys.109 ( 7 ), 07B306 ( 2011 ).
  • Kumari S Singh RP . Glycolic acid-functionalized chitosan-Co3O4–Fe3O4 hybrid magnetic nanoparticles-based nanohybrid scaffolds for drug-delivery and tissue engineering . J. Mater. Sci.48 ( 4 ), 1524 – 1532 ( 2013 ).
  • Viota J Carazo A Munoz-Gamez J et al. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation . Mater. Sci. Eng.: C33 ( 3 ), 1183 – 1192 ( 2013 ).
  • Kavaz D Odabaş S Güven E Demirbilek M Denkbaş EB . Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers . J. Bioact. Compatible Polym.25 ( 3 ), 305 – 318 ( 2010 ).
  • Li F-R Yan W-H Guo Y-H Qi H Zhou H-X . Preparation of carboplatin-Fe@ C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer . Int. J. Hyperthermia25 ( 5 ), 383 – 391 ( 2009 ).
  • Alvarez-Berríos MP Castillo A Mendez J Soto O Rinaldi C Torres-Lugo M . Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity . Int. J. Nanomedicine8 , 1003 – 1013 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.