61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanotherapy of Cancer By Photoelectrons Emitted From the Surface of Nanoparticles Exposed to Nonionizing Ultraviolet Radiation

&
Pages 1107-1117 | Received 09 Feb 2017, Accepted 10 Mar 2017, Published online: 27 Apr 2017

References

  • Letfullin RR George TF . Computational Nanomedicine and Nanotechnology: Lectures with Computer Practicums.Springer, Switzerland (2016).
  • Letfullin RR George TF . Plasmonic nanomaterials in nanomedicine. In : Springer Handbook of Nanomaterials.VajtaiR. ( Ed.). Springer-Verlag, Berlin-Heidelberg, Germany, 1063 – 1097 (2013).
  • Ebrahimi N Mansoori GA Skradski N . Reliability for drug targeting in cancer treatment through nanotechnology (A Stochastic differential equation-based flexible model). Front. Nanosci. Nanotech.2 (4), 144 – 148 (2016).
  • Huff TB Tong L Zhao Y Hansen MN Cheng JX Wei A . Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine2, 125 – 132 (2007).
  • Huang X Jain PK El-Sayed IH El-Sayed MA . Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23 (3), 217 – 228 (2008).
  • Terentyuk GS Maslyakova GB Suleymanova LV et al. Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J. Biomed. Opt.14, 1 – 9 (2009).
  • Letfullin RR George TF . New dynamic modes for selective laser cancer nanotherapy. In : Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine.GeorgeTFJelskiDLetfullinRRZhangGP ( Eds). World Scientific, Singapore, 131 – 172 (2011).
  • Letfullin RR Iversen CB George TF . Modeling nanophotothermal therapy: Kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomedicine: NBM7, 137 – 145 (2011).
  • Letfullin RR Rice CEW George TF . Bone cancer therapy by plasmonic nanoparticles. Ther. Deliv.2, 1259 – 1273 (2011).
  • Letfullin RR Letfullin AR George TF . Absorption efficiency and heating kinetics of nanoparticles in the RF range for selective nanotherapy of cancer. Nanomedicine: NBM11, 413 – 420 (2015).
  • Zharov VP Letfullin RR Galitovskaya E . Microbubble-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J. Phys. D: Appl. Phys.38 (15), 2571 – 2581 (2005).
  • Musumeci F Pollack GH . Influence of water on the work function of certain metals. Chem. Phys. Lett.536, 65 – 67 (2012).
  • Wikipedia . Bond-dissociation energy. https://en.wikipedia.org/wiki/Bond-dissociation_energy
  • Goulet T Patau JP Jay-Gerin JP . Thermalization and recombination of subexcitation electrons in solid water. Radiat. Prot. Dosim.31, 33 – 36 (1990).
  • Meacham JM Durvasula K Degertekin FL Federov AG . Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J. Lab. Autom.19, 1 – 18 (2014).
  • Lin MTS Pulkkinen L Uitto J Yoon K . The gene gun: current applications in cutaneous gene therapy. J. Dermatol.39, 161 – 170 (2000).
  • Liu BR Liou JS Huang YW Aronstam RS Lee HJ . Intracellular delivery of nanoparticles and DNAs by IR9 cell-penetrating peptides. PLoS ONE8 (5), e64205 (2013).
  • Luo D Saltzmn WM . Synthetic DNA delivery systems. Nat. Biotechnol.18, 33 – 37 (2000).
  • Rout MP Aitchison JD Suprapto A Hjertaas K Zhao Y Chait BT . The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.4, 635 – 651 (2000).
  • Shang L Nienhaus K Nienhaus GU . Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol.12, 5 (2014).
  • Malugin A Ghandehari H . Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol.30, 212 – 217 (2010).
  • Chithrani BD Ghazani AA Chan WCW . Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett.6, 662 – 668 (2006).
  • Wang SH Lee CW Chiou A Wei PK . Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnol.8, 33/1 – 13 (2010).
  • Lu F Wu SH Hung Y Mou CY . Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small5, 1408 – 1413 (2009).
  • Varela JA Bexiga MG Aberg C Simpson JC Dawson KA . Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J. Nanobiotechnol.10, 39/1 – 6 (2012).
  • Huang J Bu L Xie J et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano4, 7151 – 7160 (2010).
  • Oh E Delehanty JB Sapsford KE et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano5, 6434 – 6448 (2011).
  • Colombe Y Slichter DH Wilson AC Leibfried D Wineland DJ . Single-mode optical fiber for high-power, low-loss UV transmission. Opt. Express22, 19783 – 19793 (2014).
  • Gebert F Frosz MH Weiss T et al. Damage-free single-mode transmission of deep-UV light in hollow-core PCF, Opt. Express22, 15388 – 15396 (2014).
  • Khoa NT Kim SW Yoo DH Hahn SH . Size-dependent work function and catalytic performance of gold nanoparticles decorated graphene oxide sheets. Appl. Catalysis A Gen469, 169 – 164 (2014).
  • CRC Handbook of Chemistry and Physics (95th Edition). Haynes WM ( Ed.). CRC Press/Taylor & Francis Group, FL, USA (2014).
  • Lu Y Wang L Chen D Wang G . Determination of the concentration and the average number of gold atoms in a gold nanoparticle by osmotic pressure. Langmuir28, 9282 – 9287 (2012).
  • Rezaee M Hunting DJ Sanche L . Correlation between energy deposition and molecular damage from Auger electrons: a case study of ultra-low energy (5–18 eV) electron interactions with DNA. Med. Phys.41 (7), 072502 (2014).
  • Alaaldin AM Murphy CJ . Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?J. Nanoparticle Res.12, 2313 – 2333 (2010).
  • Williams M Wohlers DW Citra M Diamond GL Swarts SG . Toxicological profile for cesium. Agency for Toxic Substances and Disease Registry, GA, USA, 24 – 32 (2004).
  • Buzea C Pacheco II Robbie K . Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2, 49 – 74 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.