799
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoparticle/siRNA-based Therapy Strategies in Glioma: Which nanoparticles, Which siRNAs?

&
Pages 89-103 | Received 05 Jul 2017, Accepted 27 Sep 2017, Published online: 04 Dec 2017

References

  • WHO Fact Sheet . www.who.int/mediacentre/factsheets/fs297/en/ .
  • Louis DN Perry A Reifenberger G et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary . Acta Neuropathol.131 ( 6 ), 803 – 820 ( 2016 ).
  • Adamson C Kanu OO Mehta AI et al. Glioblastoma multiforme: a review of where we have been and where we are going . Expert Opin. Invest. Drugs18 ( 8 ), 1061 – 1083 ( 2009 ).
  • Fire A Xu S Montgomery MK Kostas SA Driver SE Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature391 ( 6669 ), 806 – 811 ( 1998 ).
  • Elbashir SM Lendeckel W Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs . Genes Dev.15 ( 2 ), 188 – 200 ( 2001 ).
  • Grunweller A Hartmann RK . Chemical modification of nucleic acids as a key technology for the development of RNA-based therapeutics . Pharmazie71 ( 1 ), 8 – 16 ( 2016 ).
  • Lachelt U Wagner E . Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond) . Chem. Rev.115 ( 19 ), 11043 – 11078 ( 2015 ).
  • Cun D Jensen DK Maltesen MJ et al. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization . Eur. J. Pharm. Biopharm.77 ( 1 ), 26 – 35 ( 2011 ).
  • Pourgholi F Hajivalili M Farhad JN Kafil HS Yousefi M . Nanoparticles: novel vehicles in treatment of glioblastoma . Biomed. Pharmacother.77 , 98 – 107 ( 2016 ).
  • Karim R Palazzo C Evrard B Piel G . Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art . J. Control. Release227 , 23 – 37 ( 2016 ).
  • Posadas I Monteagudo S Cena V . Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis . Nanomedicine (Lond.)11 ( 7 ), 833 – 849 ( 2016 ).
  • Schulze J Hendrikx S Schulz-Siegmund M Aigner A . Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles . Acta Biomater.45 , 210 – 222 ( 2016 ).
  • Fleischer CC Payne CK . Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes . Acc. Chem. Res.47 ( 8 ), 2651 – 2659 ( 2014 ).
  • Saptarshi SR Duschl A Lopata AL . Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle . J. Nanobiotechnol.11 , 26 ( 2013 ).
  • Cohen ZR Ramishetti S Peshes-Yaloz N et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles . ACS Nano9 ( 2 ), 1581 – 1591 ( 2015 ).
  • Kong L Qiu J Sun W et al. Multifunctional PEI-entrapped gold nanoparticles enable efficient delivery of therapeutic siRNA into glioblastoma cells . Biomater. Sci.5 ( 2 ), 258 – 266 ( 2017 ).
  • Wang F Zhang W Shen Y Huang Q Zhou D Guo S . Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods . Acta Biomater.23 , 136 – 146 ( 2015 ).
  • Jensen SA Day ES Ko CH et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma . Sci. Transl. Med.5 ( 209 ), 209ra152 ( 2013 ).
  • Yoo B Ifediba MA Ghosh S Medarova Z Moore A . Combination treatment with theranostic nanoparticles for glioblastoma sensitization to TMZ . Mol. Imaging Biol.16 ( 5 ), 680 – 689 ( 2014 ).
  • Lyons SA O'neal J Sontheimer H . Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin . Glia39 ( 2 ), 162 – 173 ( 2002 ).
  • Deshane J Garner CC Sontheimer H . Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2 . J. Biol. Chem.278 ( 6 ), 4135 – 4144 ( 2003 ).
  • Kato T Natsume A Toda H et al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells . Gene Ther.17 ( 11 ), 1363 – 1371 ( 2010 ).
  • Costa PM Cardoso AL Custodia C Cunha P Pereira De Almeida L Pedroso De Lima MC . MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma . J. Control. Release207 , 31 – 39 ( 2015 ).
  • Morrissey DV Lockridge JA Shaw L et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs . Nat. Biotechnol.23 ( 8 ), 1002 – 1007 ( 2005 ).
  • Lee JH Engler JA Collawn JF Moore BA . Receptor mediated uptake of peptides that bind the human transferrin receptor . Eur. J. Biochem.268 ( 7 ), 2004 – 2012 ( 2001 ).
  • Kuang Y An S Guo Y et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting . Int. J. Pharm.454 ( 1 ), 11 – 20 ( 2013 ).
  • Kuang Y Jiang X Zhang Y et al. Dual functional peptide-driven nanoparticles for highly efficient glioma-targeting and drug codelivery . Mol. Pharm.13 ( 5 ), 1599 – 1607 ( 2016 ).
  • Wei L Guo XY Yang T Yu MZ Chen DW Wang JC . Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles . Int. J. Pharm.510 ( 1 ), 394 – 405 ( 2016 ).
  • Agrawal A Min DH Singh N et al. Functional delivery of siRNA in mice using dendriworms . ACS Nano3 ( 9 ), 2495 – 2504 ( 2009 ).
  • Ewe A Panchal O Pinnapireddy SR et al. Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo . Nanomedicine13 ( 1 ), 209 – 218 ( 2016 ).
  • Danhier F Messaoudi K Lemaire L Benoit JP Lagarce F . Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation . Int. J. Pharm.481 ( 1–2 ), 154 – 161 ( 2015 ).
  • Wang L Hao Y Li H et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles . J. Drug Target.23 ( 9 ), 832 – 846 ( 2015 ).
  • Han L Zhang A Wang H et al. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo . Hum. Gene Ther.21 ( 4 ), 417 – 426 ( 2010 ).
  • Brooks H Lebleu B Vives E . Tat peptide-mediated cellular delivery: back to basics . Adv. Drug Deliv. Rev.57 ( 4 ), 559 – 577 ( 2005 ).
  • Medarova Z Pham W Farrar C Petkova V Moore A . In vivo imaging of siRNA delivery and silencing in tumors . Nat. Med.13 ( 3 ), 372 – 377 ( 2007 ).
  • Zhang H . Green fluorescent protein specified small interfering RNA-cross-linked iron oxide nanoparticles-Cy5.5 . In : Molecular Imaging and Contrast Agent Database (MICAD) . National Center for Biotechnology Information (US) , MD, USA ( 2008 ).
  • An S Jiang X Shi J et al. Single-component self-assembled RNAi nanoparticles functionalized with tumor-targeting iNGR delivering abundant siRNA for efficient glioma therapy . Biomaterials53 , 330 – 340 ( 2015 ).
  • Ofek P Fischer W Calderon M Haag R Satchi-Fainaro R . In vivo delivery of small interfering RNA to tumors and their vasculature by novel dendritic nanocarriers . FASEB J.24 ( 9 ), 3122 – 3134 ( 2010 ).
  • Fromberg A Rabe M Oppermann H Gaunitz F Aigner A . Analysis of cellular and molecular antitumor effects upon inhibition of SATB1 in glioblastoma cells . BMC Cancer17 ( 1 ), 3 ( 2017 ).
  • Hendruschk S Wiedemuth R Aigner A et al. RNA interference targeting survivin exerts antitumoral effects in vitro and in established glioma xenografts in vivo . Neuro Oncol.13 ( 10 ), 1074 – 1089 ( 2011 ).
  • Xu CF Liu Y Shen S Zhu YH Wang J . Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy . Biomaterials51 , 1 – 11 ( 2015 ).
  • Chu SH Zhou ZM Feng DF Ma YB . Inhibition of human glioma U251 cells growth in vitro and in vivo by hydroxyapatite nanoparticle-assisted delivery of short hairpin RNAs against SATB1 . Mol. Biol. Rep.41 ( 2 ), 977 – 986 ( 2014 ).
  • Yin T Wang P Li J et al. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas . Biomaterials34 ( 18 ), 4532 – 4543 ( 2013 ).
  • Liu HM Zhang YF Xie YD et al. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy . Int. J. Nanomedicine12 , 1065 – 1083 ( 2017 ).
  • Van Woensel M Wauthoz N Rosiere R et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration . J. Control. Release227 , 71 – 81 ( 2016 ).
  • Van Woensel M Mathivet T Wauthoz N et al. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy . Sci. Rep.7 ( 1 ), 1217 ( 2017 ).
  • Verhaak RG Hoadley KA Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 . Cancer Cell17 ( 1 ), 98 – 110 ( 2010 ).
  • Gray GK Mcfarland BC Nozell SE Benveniste EN . NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age . Expert Rev. Neurother.14 ( 11 ), 1293 – 1306 ( 2014 ).
  • Louis DN Ohgaki H Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system . Acta Neuropathol.114 ( 2 ), 97 – 109 ( 2007 ).
  • Cancer Genome Atlas Research Network . Comprehensive genomic characterization defines human glioblastoma genes and core pathways . Nature455 ( 7216 ), 1061 – 1068 ( 2008 ).
  • Kanu OO Mehta A Di C et al. Glioblastoma multiforme: a review of therapeutic targets . Expert Opin. Ther. Targets13 ( 6 ), 701 – 718 ( 2009 ).
  • Parsons DW Jones S Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme . Science321 ( 5897 ), 1807 – 1812 ( 2008 ).
  • Hatanpaa KJ Burma S Zhao D Habib AA . Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance . Neoplasia12 ( 9 ), 675 – 684 ( 2010 ).
  • Lerner RG Grossauer S Kadkhodaei B et al. Targeting a Plk1-controlled polarity checkpoint in therapy-resistant glioblastoma-propagating cells . Cancer Res.75 ( 24 ), 5355 – 5366 ( 2015 ).
  • Herzog S Fink MA Weitmann K et al. Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival . Neuro Oncol.17 ( 2 ), 223 – 242 ( 2015 ).
  • Priester M Copanaki E Vafaizadeh V et al. STAT3 silencing inhibits glioma single cell infiltration and tumor growth . Neuro Oncol.15 ( 7 ), 840 – 852 ( 2013 ).
  • Rong Y Durden DL Van Meir EG Brat DJ . ’Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis . J. Neuropathol. Exp. Neurol.65 ( 6 ), 529 – 539 ( 2006 ).
  • Wick W Weller M . Trabedersen to target transforming growth factor-beta: when the journey is not the reward, in reference to Bogdahn et al. (Neuro-Oncology 2011;13:132–142) . Neuro Oncol.13 ( 5 ), 559 – 560 ( 2011 ).
  • Bogdahn U Hau P Stockhammer G et al. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled Phase IIb study . Neuro Oncol.13 ( 1 ), 132 – 142 ( 2011 ).
  • Claes A Idema AJ Wesseling P . Diffuse glioma growth: a guerilla war . Acta Neuropathol.114 ( 5 ), 443 – 458 ( 2007 ).
  • Drappatz J Norden AD Wen PY . Therapeutic strategies for inhibiting invasion in glioblastoma . Expert Rev. Neurother.9 ( 4 ), 519 – 534 ( 2009 ).
  • Copanaki E Chang S Vlachos A et al. sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress . Mol. Cell. Neurosci.44 ( 4 ), 386 – 393 ( 2010 ).
  • Eisele G Weller M . Targeting apoptosis pathways in glioblastoma . Cancer Lett.332 ( 2 ), 335 – 345 ( 2013 ).
  • Chu SH Ma YB Feng DF et al. Upregulation of SATB1 is associated with the development and progression of glioma . J. Transl. Med.10 , 149 ( 2012 ).
  • Chu SH Ma YB Feng DF Li ZQ Jiang PC . Correlation between SATB1 and Bcl-2 expression in human glioblastoma multiforme . Mol. Med. Rep.7 ( 1 ), 139 – 143 ( 2012 ).
  • Chu SH Ma YB Feng DF et al. Relationship between SATB1 expression and prognosis in astrocytoma . J. Clin. Neurosci.20 ( 4 ), 543 – 547 ( 2013 ).
  • Han S Xia J Qin X Han S Wu A . Phosphorylated SATB1 is associated with the progression and prognosis of glioma . Cell Death Dis.4 , e901 ( 2013 ).
  • Hobbs SK Monsky WL Yuan F et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment . Proc. Natl Acad. Sci. USA95 ( 8 ), 4607 – 4612 ( 1998 ).
  • Alvarez-Erviti L Seow Y Yin H Betts C Lakhal S Wood MJ . Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes . Nat. Biotechnol.29 ( 4 ), 341 – 345 ( 2011 ).
  • Yu D Khan OF Suva ML et al. Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression . Proc. Natl Acad. Sci. USA114 ( 30 ), E6147 – E6156 ( 2017 ).
  • Sherry MM Reeves A Wu JK Cochran BH . STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells . Stem Cells27 ( 10 ), 2383 – 2392 ( 2009 ).
  • Jin J Bae KH Yang H et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles . Bioconjug. Chem.22 ( 12 ), 2568 – 2572 ( 2011 ).
  • Wang XL Xu R Wu X Gillespie D Jensen R Lu ZR . Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice . Mol. Pharm.6 ( 3 ), 738 – 746 ( 2009 ).
  • An S He D Wagner E Jiang C . Peptide-like polymers exerting effective glioma-targeted siRNA delivery and release for therapeutic application . Small11 ( 38 ), 5142 – 5150 ( 2015 ).
  • Lee TJ Haque F Shu D et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model . Oncotarget6 ( 17 ), 14766 – 14776 ( 2015 ).
  • Das J Das S Paul A Samadder A Bhattacharyya SS Khuda-Bukhsh AR . Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo . Toxicol. Lett.225 ( 3 ), 454 – 466 ( 2014 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.