500
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Nanomedicine and Survivin Targeting in Brain Cancers

, &
Pages 105-137 | Received 14 Sep 2017, Accepted 31 Oct 2017, Published online: 21 Nov 2017

References

  • Brain cancer (C71) . https://canceraustralia.gov.au/affected-cancer/cancer-types/brain-cancer/brain-cancer-statistics .
  • Siegel RL Miller KD Jemal A . Cancer statistics, 2016 . CA Cancer J. Clin.66 ( 1 ), 7 – 30 ( 2016 ).
  • Agarwal S Manchanda P Vogelbaum MA Ohlfest JR Elmquist WF . Function of the blood–brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma . Drug Metab. Disposition41 ( 1 ), 33 – 39 ( 2013 ).
  • Farrall AJ Wardlaw JM . Blood–brain barrier: ageing and microvascular disease – systematic review and meta-analysis . Neurobiol. Aging30 ( 3 ), 337 – 352 ( 2009 ).
  • Abbott NJ Ronnback L Hansson E . Astrocyte-endothelial interactions at the blood–brain barrier . Nat. Rev. Neurosci.7 ( 1 ), 41 – 53 ( 2006 ).
  • Abbott NJ Patabendige AaK Dolman DEM Yusof SR Begley DJ . Structure and function of the blood–brain barrier . Neurobiol. Dis.37 ( 1 ), 13 – 25 ( 2010 ).
  • Zlokovic BV . The blood–brain barrier in health and chronic neurodegenerative disorders . Neuron57 ( 2 ), 178 – 201 ( 2008 ).
  • Saraiva C Praca C Ferreira R Santos T Ferreira L Bernardino L . Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases . J. Control. Release235 , 34 – 47 ( 2016 ).
  • Friedemann U . blood–brain barrier . Physiol. Rev.22 ( 2 ), 125 – 145 ( 1942 ).
  • Wolburg H Lippoldt A . Tight junctions of the blood–brain barrier: development, composition and regulation . Vascul. Pharmacol.38 ( 6 ), 323 – 337 ( 2002 ).
  • Hagenbuch B Gao B Meier PJ . Transport of xenobiotics across the blood–brain barrier . Physiology17 ( 6 ), 231 – 234 ( 2002 ).
  • Pachter JS De Vries HE Fabry Z . The blood–brain barrier and its role in immune privilege in the central nervous system . J. Neuropathol. Exp. Neurol.62 ( 6 ), 593 – 604 ( 2003 ).
  • Tavares MR De Menezes LR Do Nascimento DF et al. Polymeric nanoparticles assembled with microfluidics for drug delivery across the blood–brain barrier . Eur. Phy. J. Spec. Top.225 ( 4 ), 779 – 795 ( 2016 ).
  • Deeken JF Löscher W . The blood–brain barrier and cancer: transporters, treatment, and trojan horses . Clin. Cancer. Res.13 ( 6 ), 1663 – 1674 ( 2007 ).
  • Furnari FB Fenton T Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment . Genes Dev.21 ( 21 ), 2683 – 2710 ( 2007 ).
  • Park JK Hodges T Arko L et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme . J. Clin. Oncol.28 ( 24 ), 3838 – 3843 ( 2010 ).
  • Tyler MA Ulasov IV Sonabend AM et al. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo . Gene Ther.16 ( 2 ), 262 – 278 ( 2009 ).
  • Kim JW Auffinger B Spencer DA et al. Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters . J. Transl. Med.14 ( 1 ), 134 ( 2016 ).
  • Ahmed AU Thaci B Tobias AL et al. A preclinical evaluation of neural stem cell-based cell carrier for targeted antiglioma oncolytic virotherapy . J. Natl Cancer Inst.105 ( 13 ), 968 – 977 ( 2013 ).
  • He H-J Wang Y Le Y et al. Surgery upregulates high mobility group box-1 and disrupts the blood–brain barrier causing cognitive dysfunction in aged rats . CNS Neurosci. Ther.18 ( 12 ), 994 – 1002 ( 2012 ).
  • Raliya R Saha D Chadha TS Raman B Biswas P . Non-invasive aerosol delivery and transport of gold nanoparticles to the brain . Sci. Rep.7 , 44718 ( 2017 ).
  • Pardridge WM . blood–brain barrier delivery . Drug Discov. Today12 ( 1–2 ), 54 – 61 ( 2007 ).
  • Neuwelt EA Goldman DL Dahlborg SA et al. Primary CNS lymphoma treated with osmotic blood–brain barrier disruption: prolonged survival and preservation of cognitive function . J. Clin. Oncol.9 ( 9 ), 1580 – 1590 ( 1991 ).
  • Hynynen K Mcdannold N Vykhodtseva N Jolesz FA . Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits . Radiology220 ( 3 ), 640 – 646 ( 2001 ).
  • Hynynen K Mcdannold N Vykhodtseva N Jolesz FA . Non-invasive opening of BBB by focused ultrasound . Acta Neurochir. Suppl.86 , 555 – 558 ( 2003 ).
  • Fenstermaker RA Ciesielski MJ . Challenges in the development of a survivin vaccine (SurVaxM) for malignant glioma . Expert Rev. Vaccines13 ( 3 ), 377 – 385 ( 2014 ).
  • Chakravarti A Noll E Black PM et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas . J. Clin. Oncol.20 ( 4 ), 1063 – 1068 ( 2002 ).
  • Yamamoto T Tanigawa N . The role of survivin as a new target of diagnosis and treatment in human cancer . Med. Electron Microsc.34 ( 4 ), 207 – 212 ( 2001 ).
  • Waligórska-Stachura J Jankowska A Waśko R et al. Survivin – prognostic tumor biomarker in human neoplasms – review . Ginekol. Pol.83 ( 7 ), 537 – 540 ( 2012 ).
  • Mendez G Ozpinar A Raskin J Gultekin SH Ross DA . Case comparison and literature review of glioblastoma: a tale of two tumors . Surg. Neurol. Int.5 , 121 ( 2014 ).
  • Sun L Joh DY Al-Zaki A et al. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme . J. Biomed. Nanotechnol.12 ( 2 ), 347 – 356 ( 2016 ).
  • Omuro A Deangelis LM . Glioblastoma and other malignant gliomas: a clinical review . JAMA310 ( 17 ), 1842 – 1850 ( 2013 ).
  • Stupp R Gander M Leyvraz S Newlands E . Current and future developments in the use of temozolomide for the treatment of brain tumors . Lancet Oncol.2 ( 9 ), 552 – 560 ( 2001 ).
  • Bent MJVD Taphoorn MJB Brandes AA et al. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971 . J. Clin. Oncol.21 ( 13 ), 2525 – 2528 ( 2003 ).
  • Bicker J Alves G Fortuna A Falcão A . Blood–brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review . Eur. J. Pharm. Biopharm.87 ( 3 ), 409 – 432 ( 2014 ).
  • Appel EA Rowland MJ Loh XJ Heywood RM Watts C Scherman OA . Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril . Chem. Commun.48 ( 79 ), 9843 – 9845 ( 2012 ).
  • Gaillard PJ Appeldoorn CC Dorland R et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3–101) . PLoS ONE9 ( 1 ), e82331 ( 2014 ).
  • Wohlfart S Gelperina S Kreuter J . Transport of drugs across the blood–brain barrier by nanoparticles . J. Control. Release161 ( 2 ), 264 – 273 ( 2012 ).
  • Brun SN Markant SL Esparza LA et al. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma . Oncogene34 ( 29 ), 3770 – 3779 ( 2015 ).
  • Kanwar JR Sun X Punj V et al. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal . Nanomedicine8 ( 4 ), 399 – 414 ( 2012 ).
  • Hadinoto K Sundaresan A Cheow WS . Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review . Eur. J. Pharm. Biopharm.85 ( 3 Pt A ), 427 – 443 ( 2013 ).
  • Jo DH Kim JH Lee TG Kim JH . Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases . Nanomed. Nanotechnol. Biol. Med.11 ( 7 ), 1603 – 1611 ( 2015 ).
  • Kreuter J . Application of nanoparticles for the delivery of drugs to the brain . International Congress Series1277 , 85 – 94 ( 2005 ).
  • De Jong WH Borm PJA . Drug delivery and nanoparticles: applications and hazards . Int. J. Nanomed.3 ( 2 ), 133 – 149 ( 2008 ).
  • Reijerkerk A Appeldoorn CC Rip J De Boer M Gaillard PJ . Systemic treatment with glutathione PEGylated liposomal methylprednisolone (2B3–201) improves therapeutic efficacy in a model of ocular inflammation . Invest. Ophthalmol. Vis. Sci.55 ( 4 ), 2788 – 2794 ( 2014 ).
  • Khlebtsov N Dykman L . Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies . Chem. Soc. Rev.40 ( 3 ), 1647 – 1671 ( 2011 ).
  • Goel R Shah N Visaria R Paciotti GF Bischof JC . Biodistribution of TNF-α-coated gold nanoparticles in an in vivo model system . Nanomedicine4 ( 4 ), 401 – 410 ( 2009 ).
  • Huile G Zhi Y Shijie C et al. Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles . Nanotechnology23 ( 43 ), 435101 ( 2012 ).
  • Lindqvist A Rip J Gaillard PJ Bjorkman S Hammarlund-Udenaes M . Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study . Mol. Pharm.10 ( 5 ), 1533 – 1541 ( 2013 ).
  • Birngruber T Raml R Gladdines W et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3–101) as compared with generic Caelyx,((R))/Doxil((R))–a cerebral open flow microperfusion pilot study . J. Pharm. Sci.103 ( 7 ), 1945 – 1948 ( 2014 ).
  • Lee DH Rotger C Appeldoorn CC et al. Glutathione PEGylated liposomal methylprednisolone (2B3–201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis . J. Neuroimmunol.274 ( 1–2 ), 96 – 101 ( 2014 ).
  • James FH Daniel NS Henry MS . The use of gold nanoparticles to enhance radiotherapy in mice . Phys. Med. Biol.49 ( 18 ), N309 ( 2004 ).
  • Wilson R Xiaojing Z Linghong G et al. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle . Nanotechnology20 ( 37 ), 375101 ( 2009 ).
  • Chithrani DB Jelveh S Jalali F et al. Gold nanoparticles as radiation sensitizers in cancer therapy . Radiat. Res.173 ( 6 ), 719 – 728 ( 2010 ).
  • Kedar U Phutane P Shidhaye S Kadam V . Advances in polymeric micelles for drug delivery and tumor targeting . Nanomedicine6 ( 6 ), 714 – 729 ( 2010 ).
  • Kocbek P Obermajer N Cegnar M Kos J Kristl J . Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody . J. Control. Release120 ( 1 ), 18 – 26 ( 2007 ).
  • Allen TM Cullis PR . Drug delivery systems: entering the mainstream . Science303 ( 5665 ), 1818 – 1822 ( 2004 ).
  • Davis ME Chen ZG Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer . Nat. Rev. Drug Discov.7 ( 9 ), 771 – 782 ( 2008 ).
  • Hosseini SF Zandi M Rezaei M Farahmandghavi F . Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study . Carbohydr. Polym.95 ( 1 ), 50 – 56 ( 2013 ).
  • Kamaly N Yameen B Wu J Farokhzad OC . Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release . Chem. Rev.116 ( 4 ), 2602 – 2663 ( 2016 ).
  • Thomas M Klibanov AM . Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells . Proc. Natl Acad. Sci. USA100 ( 16 ), 9138 – 9143 ( 2003 ).
  • Kanasty R Dorkin JR Vegas A Anderson D . Delivery materials for siRNA therapeutics . Nat. Mater.12 ( 11 ), 967 – 977 ( 2013 ).
  • Wang H-X Xiong M-H Wang Y-C Zhu J Wang J . N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver . J. Control. Release166 ( 2 ), 106 – 114 ( 2013 ).
  • Deshpande PP Biswas S Torchilin VP . Current trends in the use of liposomes for tumor targeting . Nanomedicine8 ( 9 ), 1509 – 1528 ( 2013 ).
  • Wahab R Siddiqui MA Saquib Q et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity . Colloids Surf. B Biointerfaces117 , 267 – 276 ( 2014 ).
  • Johannsen M Gneveckow U Thiesen B et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution . Eur. Urol.52 ( 6 ), 1653 – 1662 ( 2007 ).
  • Schroeder U Sommerfeld P Ulrich S Sabel BA . Nanoparticle technology for delivery of drugs across the blood–brain barrier . J. Pharm. Sci.87 ( 11 ), 1305 – 1307 ( 1998 ).
  • Zhang TT Li W Meng G Wang P Liao W . Strategies for transporting nanoparticles across the blood–brain barrier . Biomater. Sci.4 ( 2 ), 219 – 229 ( 2016 ).
  • Dhar S Reddy EM Prabhune A Pokharkar V Shiras A Prasad BL . Cytotoxicity of sophorolipid–gellan gum–gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines . Nanoscale3 ( 2 ), 575 – 580 ( 2011 ).
  • Wan X Zheng X Pang X et al. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain . Oncotarget7 ( 23 ), 34038 – 34051 ( 2016 ).
  • Gao H Yang Z Cao S et al. Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles . Nanotechnology23 ( 43 ), 435101 ( 2012 ).
  • Rip J Chen L Hartman R et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats . J. Drug Target.22 ( 5 ), 460 – 467 ( 2014 ).
  • Rae CD Williams SR . Glutathione in the human brain: review of its roles and measurement by magnetic resonance spectroscopy . Anal. Biochem.529 , 127 – 143 ( 2017 ).
  • Daraee H Etemadi A Kouhi M Alimirzalu S Akbarzadeh A . Application of liposomes in medicine and drug delivery . Artif. Cells Nanomed. Biotechnol.44 ( 1 ), 381 – 391 ( 2016 ).
  • Rotman M Welling MM Bunschoten A et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease . J. Control. Release203 , 40 – 50 ( 2015 ).
  • Geldenhuys W Wehrung D Groshev A Hirani A Sutariya V . Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers . Pharm. Dev. Technol.20 ( 4 ), 497 – 506 ( 2015 ).
  • Geldenhuys W Mbimba T Bui T Harrison K Sutariya V . Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers . J. Drug Targeting19 ( 9 ), 837 – 845 ( 2011 ).
  • Warner DS Sheng H Batinić-Haberle I . Oxidants, antioxidants and the ischemic brain . J. Exp. Biol.207 ( 18 ), 3221 – 3231 ( 2004 ).
  • Kannan R Kuhlenkamp JF Ookhtens M Kaplowitz N . Transport of glutathione at blood–brain barrier of the rat: inhibition by glutathione analogs and age-dependence . J. Pharmacol. Exp. Ther.263 ( 3 ), 964 – 970 ( 1992 ).
  • Holtman L Van Vliet EA Appeldoorn C et al. Glutathione pegylated liposomal methylprednisolone administration after the early phase of status epilepticus did not modify epileptogenesis in the rat . Epilepsy Res.108 ( 3 ), 396 – 404 ( 2014 ).
  • Schweingruber N Haine A Tiede K et al. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis . J. Immunol.187 ( 8 ), 4310 – 4318 ( 2011 ).
  • Mallick S Choi JS . Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery . J. Nanosci. Nanotechnol.14 ( 1 ), 755 – 765 ( 2014 ).
  • Simpson CA Salleng KJ Cliffel DE Feldheim DL . In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles . Nanomedicine9 ( 2 ), 257 – 263 ( 2013 ).
  • Liu J Yu M Zhou C Yang S Ning X Zheng J . Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance . J. Am. Chem. Soc.135 ( 13 ), 4978 – 4981 ( 2013 ).
  • Vigderman L Zubarev ER . Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules . Adv. Drug Del. Rev.65 ( 5 ), 663 – 676 ( 2013 ).
  • Zhou C Long M Qin Y Sun X Zheng J . Luminescent gold nanoparticles with efficient renal clearance . Angew. Chem. Int. Ed. Engl.50 ( 14 ), 3168 – 3172 ( 2011 ).
  • Dimitriou NM Tsekenis G Balanikas EC et al. Gold nanoparticles, radiations and the immune system: current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy . Pharmacol. Ther.178 , 1 – 17 ( 2017 ).
  • Astashkina AI Jones CF Thiagarajan G et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model . Biomaterials35 ( 24 ), 6323 – 6331 ( 2014 ).
  • Bresee J Bond CM Worthington RJ et al. Nanoscale structure–activity relationships, mode of action, and biocompatibility of gold nanoparticle antibiotics . J. Am. Chem. Soc.136 ( 14 ), 5295 – 5300 ( 2014 ).
  • Sindhu K Rajaram A Sreeram KJ Rajaram R . Curcumin conjugated gold nanoparticle synthesis and its biocompatibility . RSC Adv.4 ( 4 ), 1808 – 1818 ( 2014 ).
  • Grant SA Spradling CS Grant DN et al. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold . J. Biomed. Mater. Res. A102 ( 2 ), 332 – 339 ( 2014 ).
  • Li N Zhao P Astruc D . Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity . Angew. Chem. Int. Ed. Engl.53 ( 7 ), 1756 – 1789 ( 2014 ).
  • Louis C Pluchery O World S . Gold Nanoparticles For Physics, Chemistry And Biology . Imperial College Press, distributed by World Scientific Pub. Co. , Singapore, London ( 2012 ).
  • Murphy CJ Gole AM Stone JW et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging . Acc. Chem. Res.41 ( 12 ), 1721 – 1730 ( 2008 ).
  • Boisselier E Astruc D . Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity . Chem. Soc. Rev.38 ( 6 ), 1759 – 1782 ( 2009 ).
  • Alkilany AM Murphy CJ . Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12 ( 7 ), 2313 – 2333 ( 2010 ).
  • Chen YS Hung YC Liau I Huang GS . Assessment of the In vivo toxicity of gold nanoparticles . Nanoscale Res. Lett.4 ( 8 ), 858 – 864 ( 2009 ).
  • Pannuti A Foreman K Rizzo P et al. Targeting notch to target cancer stem cells . Clin. Cancer. Res.16 ( 12 ), 3141 – 3152 ( 2010 ).
  • Merlos-Suárez A Barriga Francisco M Jung P et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse . Cell Stem Cell8 ( 5 ), 511 – 524 ( 2011 ).
  • Bao S Wu Q Mclendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response . Nature444 ( 7120 ), 756 – 760 ( 2006 ).
  • Leder K Pitter K Laplant Q et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules . Cell156 ( 3 ), 603 – 616 ( 2014 ).
  • Ache BW Young JM . Olfaction: diverse species, conserved principles . Neuron48 ( 3 ), 417 – 430 ( 2005 ).
  • Hildebrand JG Shepherd GM . Mechanisms of olfactory discrimination: converging evidence for common principles across phyla . Annu. Rev. Neurosci.20 , 595 – 631 ( 1997 ).
  • Kaupp UB . Olfactory signalling in vertebrates and insects: differences and commonalities . Nat. Rev. Neurosci.11 ( 3 ), 188 – 200 ( 2010 ).
  • Vosshall LB Stocker RF . Molecular architecture of smell and taste in Drosophila . Annu. Rev. Neurosci.30 , 505 – 533 ( 2007 ).
  • Stopfer M . Olfactory processing: massive convergence onto sparse codes . Curr. Biol.17 ( 10 ), R363 – R364 ( 2007 ).
  • Wehr M Laurent G . Relationship between afferent and central temporal patterns in the locust olfactory system . J. Neurosci.19 ( 1 ), 381 – 390 ( 1999 ).
  • Boeckh J Ernst KD Selsam P . Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach . Ann. NY Acad. Sci.510 , 39 – 43 ( 1987 ).
  • Watanabe H Nishino H Nishikawa M Mizunami M Yokohari F . Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana . J. Comp. Neurol.518 ( 19 ), 3907 – 3930 ( 2010 ).
  • Huart C Rombaux P Hummel T . Plasticity of the human olfactory system: the olfactory bulb . Molecules18 ( 9 ), 11586 – 11600 ( 2013 ).
  • Liss L Gomez F . The nature of senile changes of the human olfactory bulb and tract . AMA Arch. Otolaryngol.67 ( 2 ), 167 – 171 ( 1958 ).
  • Doty RL . Handbook Of Olfaction And Gustation . Wiley , Blackwell, Hoboken ( 2015 ).
  • Van Riel D Verdijk R Kuiken T . The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system . J. Pathol.235 ( 2 ), 277 – 287 ( 2015 ).
  • Shevtsov MA Nikolaev BP Ryzhov VA et al. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1) . Nanoscale7 ( 48 ), 20652 – 20664 ( 2015 ).
  • Shevtsov MA Nikolaev BP Yakovleva LY et al. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma . Neoplasia17 ( 1 ), 32 – 42 ( 2015 ).
  • Shevtsov MA Yakovleva LY Nikolaev BP et al. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma . Neuro Oncol.16 ( 1 ), 38 – 49 ( 2014 ).
  • Kievit FM Stephen ZR Veiseh O et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs . ACS Nano6 ( 3 ), 2591 – 2601 ( 2012 ).
  • Ma X Gong A Chen B et al. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy . Colloids Surf. B Biointerfaces126 , 44 – 49 ( 2015 ).
  • Mahajan S Koul V Choudhary V Shishodia G Bharti AC . Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging . Nanotechnology24 ( 1 ), 015603 ( 2013 ).
  • Gahramanov S Muldoon LL Varallyay CG et al. Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival . Radiology266 ( 3 ), 842 – 852 ( 2013 ).
  • Gahramanov S Varallyay C Tyson RM et al. Diagnosis of pseudoprogression using MRI perfusion in patients with glioblastoma multiforme may predict improved survival . CNS Oncol.3 ( 6 ), 389 – 400 ( 2014 ).
  • Liu H Zhang J Chen X et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside . Nanoscale8 ( 15 ), 7808 – 7826 ( 2016 ).
  • Espinosa A Di Corato R Kolosnjaj-Tabi J Flaud P Pellegrino T Wilhelm C . Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment . ACS Nano10 ( 2 ), 2436 – 2446 ( 2016 ).
  • Martinez-Boubeta C Simeonidis K Makridis A et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications . Sci. Rep.3 , 1652 ( 2013 ).
  • Pankhurst QA Thanh NTK Jones SK Dobson J . Progress in applications of magnetic nanoparticles in biomedicine . J. Phys. D-Appli. Phys.42 ( 22 ), 1 – 15 ( 2009 ).
  • Munnier E Cohen-Jonathan S Linassier C et al. Novel method of doxorubicin–SPION reversible association for magnetic drug targeting . Int. J. Pharm.363 ( 1 ), 170 – 176 ( 2008 ).
  • Ling Y Wei K Zou F Zhong S . Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma . Int. J. Pharm.430 ( 1–2 ), 266 – 275 ( 2012 ).
  • Fang J-H Lai Y-H Chiu T-L Chen Y-Y Hu S-H Chen S-Y . Magnetic core–shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas . Adv. Healthcare Mater.3 ( 8 ), 1250 – 1260 ( 2014 ).
  • Cui Y Xu Q Chow PK-H Wang D Wang C-H . Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment . Biomaterials34 ( 33 ), 8511 – 8520 ( 2013 ).
  • Muthiah M Park I-K Cho C-S . Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting . Biotechnol. Adv.31 ( 8 ), 1224 – 1236 ( 2013 ).
  • Rosen JE Chan L Shieh D-B Gu FX . Iron oxide nanoparticles for targeted cancer imaging and diagnostics . Nanomed. Nanotechnol. Biol. Med.8 ( 3 ), 275 – 290 ( 2012 ).
  • Dosa E Guillaume DJ Haluska M et al. Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol . Neuro Oncol.13 ( 2 ), 251 – 260 ( 2011 ).
  • Varallyay CG Muldoon LL Gahramanov S et al. Dynamic MRI using iron oxide nanoparticles to assess early vascular effects of antiangiogenic versus corticosteroid treatment in a glioma model . J. Cereb. Blood Flow Metab.29 ( 4 ), 853 – 860 ( 2009 ).
  • Gkagkanasiou M Ploussi A Gazouli M Efstathopoulos EP . USPIO-enhanced MRI neuroimaging: a review . J. Neuroimaging26 ( 2 ), 161 – 168 ( 2016 ).
  • Hygino Da Cruz LC Rodriguez I Domingues RC Gasparetto EL Sorensen AG . Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma . Am. J. Neuroradiol.32 ( 11 ), 1978 – 1985 ( 2011 ).
  • Brandsma D Stalpers L Taal W Sminia P Van Den Bent MJ . Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas . Lancet Oncol.9 ( 5 ), 453 – 461 ( 2008 ).
  • Shevtsov MA Nikolaev BP Yakovleva LY et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors . Int. J. Nanomedicine9 , 273 – 287 ( 2014 ).
  • Laurent S Dutz S Häfeli UO Mahmoudi M . Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles . Adv. Colloid Interface Sci.166 ( 1 ), 8 – 23 ( 2011 ).
  • Huang S-H Juang R-S . Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review . J. Nanopart. Res.13 ( 10 ), 4411 ( 2011 ).
  • Shahbazi-Gahrouei D Abdolahi M . Superparamagnetic iron oxide-C595: potential MR imaging contrast agents for ovarian cancer detection . J. Med. Phys.38 ( 4 ), 198 – 204 ( 2013 ).
  • Shahbazi-Gahrouei D Abdolahi A . Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging . Sci. World J.2013 , 1 – 7 ( 2013 ).
  • Long L Wang W Cai XD Cheng D Shuai X Peng Y . PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth . Exp. Ther. Med.7 ( 5 ), 1170 – 1176 ( 2014 ).
  • Germer K Leonard M Zhang X . RNA aptamers and their therapeutic and diagnostic applications . Int. J. Biochem. Mol. Biol.4 ( 1 ), 27 – 40 ( 2013 ).
  • Yin PT Shah BP Lee K-B . Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells . Small10 ( 20 ), 4106 – 4112 ( 2014 ).
  • Gultepe E Reynoso FJ Jhaveri A et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution . Nanomedicine5 ( 8 ), 1173 – 1182 ( 2010 ).
  • Zintchenko A Philipp A Dehshahri A Wagner E . Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity . Bioconj. Chem.19 ( 7 ), 1448 – 1455 ( 2008 ).
  • Lai XF Shen CX Wen Z et al. PinX1 regulation of telomerase activity and apoptosis in nasopharyngeal carcinoma cells . J. Exp. Clin. Cancer Res.31 , 12 ( 2012 ).
  • Elmore S . Apoptosis: a review of programmed cell death . Toxicol. Pathol.35 ( 4 ), 495 – 516 ( 2007 ).
  • Luo JC Shin VY Liu ESL et al. Dexamethasone delays ulcer healing by inhibition of angiogenesis in rat stomachs . Eur. J. Pharmacol.485 ( 1 ), 275 – 281 ( 2004 ).
  • Wedam SB Low JA Yang SX et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer . J. Clin. Oncol.24 ( 5 ), 769 – 777 ( 2006 ).
  • Maenosono S Saita S . Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia . IEEE Trans. Magn.42 ( 6 ), 1638 – 1642 ( 2006 ).
  • Verma J Lal S Van Noorden CJF . Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma . Int. J. Nanomed.9 , 2863 – 2877 ( 2014 ).
  • Silva AC Oliveira TR Mamani JB et al. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment . Int. J. Nanomed.6 , 591 – 603 ( 2011 ).
  • Moroz P Jones SK Gray BN . The effect of tumor size on ferromagnetic embolization hyperthermia in a rabbit liver tumor model . Int. J. Hyperthermia18 ( 2 ), 129 – 140 ( 2002 ).
  • Ito A Shinkai M Honda H et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles . Cancer Immunol. Immunother.52 ( 2 ), 80 – 88 ( 2003 ).
  • Ito A Shinkai M Honda H Kobayashi T . Medical application of functionalized magnetic nanoparticles . J. Biosci. Bioeng.100 ( 1 ), 1 – 11 ( 2005 ).
  • Dan M Bae Y Pittman TA Yokel RA . Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood–brain barrier models . Pharm. Res.32 ( 5 ), 1615 – 1625 ( 2015 ).
  • Shinkai M Yanase M Honda H Wakabayashi T Yoshida J Kobayashi T . Intracellular hyperthermia for cancer using magnetite cationic liposomes: In vitro study . Jap. J. Cancer Res.87 ( 11 ), 1179 – 1183 ( 1996 ).
  • Yanase M Shinkai M Honda H Wakabayashi T Yoshida J Kobayashi T . Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study . Jap. J. Cancer Res.88 ( 7 ), 630 – 632 ( 1997 ).
  • Yanase M Shinkai M Honda H Wakabayashi T Yoshida J Kobayashi T . Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study . Jap. J. Cancer Res.89 ( 4 ), 463 – 470 ( 1998 ).
  • Yanase M Shinkai M Honda H Wakabayashi T Yoshida J Kobayashi T . Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes . Jap. J. Cancer Res.89 ( 7 ), 775 – 782 ( 1998 ).
  • Shinkai M Yanase M Suzuki M et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes . J. Magn. Magn. Mater.194 ( 1 ), 176 – 184 ( 1999 ).
  • Ohno T Wakabayashi T Takemura A et al. Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study . J. Neurooncol.56 ( 3 ), 233 – 239 ( 2002 ).
  • Murakami N Kühnel A Schmid TE et al. Role of membrane Hsp70 in radiation sensitivity of tumor cells . Rad. Oncol.10 ( 1 ), 149 ( 2015 ).
  • Multhoff G . Activation of natural killer cells by heat shock protein 70 . Int. J. Hyperthermia25 ( 3 ), 169 – 175 ( 2009 ).
  • Gaca S Reichert S Multhoff G et al. Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells . J. Control. Release172 ( 1 ), 201 – 206 ( 2013 ).
  • Galluzzi L Giordanetto F Kroemer G . Targeting HSP70 for cancer therapy . Mol. Cell36 ( 2 ), 176 – 177 ( 2009 ).
  • Erlichman C . Tanespimycin: the opportunities and challenges of targeting heat shock protein 90 . Expert Opin. Invest. Drugs18 ( 6 ), 861 – 868 ( 2009 ).
  • Maier-Hauff K Rothe R Scholz R et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme . J. Neurooncol.81 ( 1 ), 53 – 60 ( 2007 ).
  • Van Landeghem FKH Maier-Hauff K Jordan A et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles . Biomaterials30 ( 1 ), 52 – 57 ( 2009 ).
  • Maier-Hauff K Ulrich F Nestler D et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme . J. Neurooncol.103 ( 2 ), 317 – 324 ( 2011 ).
  • Adkins JN Varnum SM Auberry KJ et al. Toward a human blood serum proteome - Analysis by multidimensional separation coupled with mass spectrometry . Mol. Cell. Proteomics1 ( 12 ), 947 – 955 ( 2002 ).
  • Doweiko JP Nompleggi DJ . Role of albumin in human physiology and pathophysiology . Jpen. Parenter. Enter.15 ( 2 ), 207 – 211 ( 1991 ).
  • Don BR Kaysen G . Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition . Semin. Dial.17 ( 6 ), 432 – 437 ( 2004 ).
  • Vaupel P Kallinowski F Okunieff P . Blood-flow, oxygen and nutrient supply, and metabolic microenvironment of human-tumors - a Review . Cancer Res.49 ( 23 ), 6449 – 6465 ( 1989 ).
  • Elzoghby AO Samy WM Elgindy NA . Albumin-based nanoparticles as potential controlled release drug delivery systems . J. Control. Release157 ( 2 ), 168 – 182 ( 2012 ).
  • Tiruppathi C Song W Bergenfeldt M Sass P Malik AB . Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway . J. Biol. Chem.272 ( 41 ), 25968 – 25975 ( 1997 ).
  • Kim TH Jiang HH Youn YS et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity . Int. J. Pharm.403 ( 1 ), 285 – 291 ( 2011 ).
  • Aoki T Nomura R Fujimoto T . Tyrosine phosphorylation of caveolin-1 in the endothelium . Exp. Cell Res.253 ( 2 ), 629 – 636 ( 1999 ).
  • John TA Vogel SM Tiruppathi C Malik AB Minshall RD . Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer . Am. J. Physiol. Lung Cell. Mol. Physiol.284 ( 1 ), L187 – L196 ( 2003 ).
  • Liu LB Pilch PF . A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization . J. Biol. Chem.283 ( 7 ), 4314 – 4322 ( 2008 ).
  • Schubert W Frank PG Razani B Park DS Chow CW Lisanti MP . Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo . J. Biol. Chem.276 ( 52 ), 48619 – 48622 ( 2001 ).
  • Desai N Trieu V Damascelli B Soon-Shiong P . SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients . Transl. Oncol.2 ( 2 ), 59 – 64 ( 2009 ).
  • Dreis S Rothweiler F Michaelis M Cinatl J Jr Kreuter J Langer K . Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles . Int. J. Pharm.341 ( 1–2 ), 207 – 214 ( 2007 ).
  • Ulbrich K Michaelis M Rothweiler F et al. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumor cells . Int. J. Pharm.406 ( 1–2 ), 128 – 134 ( 2011 ).
  • He Q Guo S Qian Z Chen X . Development of individualized anti-metastasis strategies by engineering nanomedicines . Chem. Soc. Rev.44 ( 17 ), 6258 – 6286 ( 2015 ).
  • Siena S Sartore-Bianchi A Di Nicolantonio F Balfour J Bardelli A . Biomarkers predicting clinical outcome of epidermal growth factor receptor–targeted therapy in metastatic colorectal cancer . J. Natl Cancer Inst.101 ( 19 ), 1308 – 1324 ( 2009 ).
  • Lee B-C Lee T-H Avraham S Avraham HK . Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1α in breast cancer cell migration through human brain microvascular endothelial cells11NIH grant NS39558 (S. Avraham), the Susan G. Komen Fellowship (S. Avraham), the Milheim Foundation (S. Avraham), CA97153 (H. Avraham), and K18 PAR-02–069 (H. Avraham). Note: This work was done during the term of an established investigatorship from the American Heart Association (H. Avraham). This article is dedicated to Charlene Engelhard for her continuing friendship and support for our research program . Mol. Cancer Res.2 ( 6 ), 327 – 338 ( 2004 ).
  • Altieri DC . Survivin, versatile modulation of cell division and apoptosis in cancer . Oncogene22 ( 53 ), 8581 – 8589 ( 2003 ).
  • Baratchi S Kanwar RK Kanwar JR . Survivin: a target from brain cancer to neurodegenerative disease . Crit. Rev. Biochem. Mol. Biol.45 ( 6 ), 535 – 554 ( 2010 ).
  • Altieri Dario C . Survivin and IAP proteins in cell-death mechanisms . Biochem. J.430 ( 2 ), 199 – 205 ( 2010 ).
  • Altieri DC . Survivin – The inconvenient IAP . Semin. Cell Dev. Biol.39 , 91 – 96 ( 2015 ).
  • Baratchi S Kanwar RK Cheung CH Kanwar JR . Proliferative and protective effects of SurR9-C84A on differentiated neural cells . J. Neuroimmunol.227 ( 1–2 ), 120 – 132 ( 2010 ).
  • Carmena M Wheelock M Funabiki H Earnshaw WC . The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis . Nat. Rev. Mol. Cell Biol.13 ( 12 ), 789 – 803 ( 2012 ).
  • Lens SMA Vader G Medema RH . The case for survivin as mitotic regulator . Curr. Opin. Cell Biol.18 ( 6 ), 616 – 622 ( 2006 ).
  • Sacristan C Kops GJPL . Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling . Trends Cell Biol.25 ( 1 ), 21 – 28 ( 2015 ).
  • Vader G Kauw JJ Medema RH Lens SM . Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody . EMBO reports7 ( 1 ), 85 – 92 ( 2006 ).
  • Lara-Gonzalez P Westhorpe Frederick G Taylor Stephen S . The spindle assembly checkpoint . Curr. Biol.22 ( 22 ), R966 – R980 ( 2012 ).
  • Vagnarelli P Earnshaw WC . Chromosomal passengers: the four-dimensional regulation of mitotic events . Chromosoma113 ( 5 ), 211 – 222 ( 2004 ).
  • Salvesen GS Duckett CS . IAP proteins: blocking the road to death's door . Nat. Rev. Mol. Cell Biol.3 ( 6 ), 401 – 410 ( 2002 ).
  • Ciesielski MJ Kozbor D Castanaro CA Barone TA Fenstermaker RA . Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma . Cancer Immunol. Immunother.57 ( 12 ), 1827 – 1835 ( 2008 ).
  • Altieri DC . Validating survivin as a cancer therapeutic target . Nat. Rev. Cancer3 ( 1 ), 46 – 54 ( 2003 ).
  • Das A Tan W-L Teo J Smith DR . Expression of survivin in primary glioblastomas . J. Cancer Res. Clin. Oncol.128 ( 6 ), 302 – 306 ( 2002 ).
  • Fenstermaker RA Ciesielski MJ Qiu J et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma . Cancer Immunol. Immunother.65 ( 11 ), 1339 – 1352 ( 2016 ).
  • Shirai K Suzuki Y Oka K et al. Nuclear survivin expression predicts poorer prognosis in glioblastoma . J. Neurooncol.91 ( 3 ), 353 ( 2008 ).
  • Stobiecka M Chalupa A Dworakowska B . Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies . Biosensors Bioelectron.84 ( Suppl. C ), 37 – 43 ( 2016 ).
  • Xylinas E Kluth LA Rieken M Karakiewicz PI Lotan Y Shariat SF . Urine markers for detection and surveillance of bladder cancer . Urol. Oncol.32 ( 3 ), 222 – 229 ( 2014 ).
  • Sarvagalla S Cheung CHA Tsai J-Y Hsieh HP Coumar MS . Disruption of protein–protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target - survivin . RSC Adv.6 ( 38 ), 31947 – 31959 ( 2016 ).
  • Stobiecka M Dworakowska B Jakiela S Lukasiak A Chalupa A Zembrzycki K . Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier-supported oligonucleotide molecular beacons . Sensors Actuators B Chem.235 ( Suppl. C ), 136 – 145 ( 2016 ).
  • Ciesielski MJ Ahluwalia MS Munich SA et al. Antitumor cytotoxic T-cell response induced by a survivin peptide mimic . Cancer Immunol. Immunother.59 ( 8 ), 1211 – 1221 ( 2010 ).
  • Ohtake J Ohkuri T Togashi Y Kitamura H Okuno K Nishimura T . Identification of novel helper epitope peptides of survivin cancer-associated antigen applicable to developing helper/killer–hybrid epitope long peptide cancer vaccine . Immunol. Lett.161 ( 1 ), 20 – 30 ( 2014 ).
  • Grossman SA Ye X Peereboom D et al. Phase I study of terameprocol in patients with recurrent high-grade glioma . Neuro Oncol.14 ( 4 ), 511 – 517 ( 2012 ).
  • Guvenc H Pavlyukov MS Joshi K et al. Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex . Clin. Cancer. Res.19 ( 3 ), 631 – 642 ( 2013 ).
  • Sriramoju B Kanwar RK Kanwar JR . Nanoformulated cell-penetrating survivin mutant and its dual actions . Int. J. Nanomedicine9 , 3279 – 3298 ( 2014 ).
  • Guo H Wang Y Song T et al. Silencing of survivin using YM155 inhibits invasion and suppresses proliferation in glioma cells . Cell Biochem. Biophys.71 ( 2 ), 587 – 593 ( 2015 ).
  • Lai PC Chen SH Yang SH Cheng CC Chiu TH Huang YT . Novel survivin inhibitor YM155 elicits cytotoxicity in glioblastoma cell lines with normal or deficiency DNA-dependent protein kinase activity . Pediatr. Neonatol.53 ( 3 ), 199 – 204 ( 2012 ).
  • Jane EP Premkumar DR Sutera PA Cavaleri JM Pollack IF . Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines . Mol. Carcinog.56 ( 4 ), 1251 – 1265 ( 2017 ).
  • Marino S Ricci B Greco A Acquati S . A novel polycomb feed forward loop in glioblastoma multiforme . Neuro Oncol.16 ( Suppl. 3 ), iii17 ( 2014 ).
  • Peery RC Liu JY Zhang JT . Targeting survivin for therapeutic discovery: past, present, and future promises . Drug Discov. Today22 ( 10 ), 1466 – 1477 ( 2017 ).
  • Shamsabadi FT Eidgahi MR Mehrbod P et al. Survivin, a promising gene for targeted cancer treatment . Asian Pac. J. Cancer Prev.17 ( 8 ), 3711 – 3719 ( 2016 ).
  • Chen X Duan N Zhang C Zhang W . Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies . J. Cancer7 ( 3 ), 314 – 323 ( 2016 ).
  • Altieri DC . Survivin, cancer networks and pathway-directed drug discovery . Nat. Rev. Cancer8 ( 1 ), 61 – 70 ( 2008 ).
  • Lacasse EC Mahoney DJ Cheung HH Plenchette S Baird S Korneluk RG . IAP-targeted therapies for cancer . Oncogene27 ( 48 ), 6252 – 6275 ( 2008 ).
  • Kelly RJ Thomas A Rajan A et al. A Phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer . Ann. Oncol.24 ( 10 ), 2601 – 2606 ( 2013 ).
  • Yamauchi T Nakamura N Hiramoto M et al. Sepantronium bromide (YM155) induces disruption of the ILF3/p54nrb complex, which is required for survivin expression . Biochem. Biophys. Res. Commun.425 ( 4 ), 711 – 716 ( 2012 ).
  • Rees MG Seashore-Ludlow B Cheah JH et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action . Nat. Chem. Biol.12 ( 2 ), 109 – 116 ( 2016 ).
  • Giaccone G Zatloukal P Roubec J et al. Multicenter Phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer . J. Clin. Oncol.27 ( 27 ), 4481 – 4486 ( 2009 ).
  • Lewis KD Samlowski W Ward J et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma . Invest. New Drugs29 ( 1 ), 161 – 166 ( 2011 ).
  • Cheson BD Bartlett NL Vose JM et al. A Phase II study of the survivin suppressant YM155 in patients with refractory diffuse large B-cell lymphoma . Cancer118 ( 12 ), 3128 – 3134 ( 2012 ).
  • Glaros TG Stockwin LH Mullendore ME Smith B Morrison BL Newton DL . The “survivin suppressants” NSC 80467 and YM155 induce a DNA damage response . Cancer Chemother. Pharmacol.70 ( 1 ), 207 – 212 ( 2012 ).
  • Winter GE Radic B Mayor-Ruiz C et al. The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity . Nat. Chem. Biol.10 ( 9 ), 768 – 773 ( 2014 ).
  • Cheng Q Ling X Haller A et al. Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter . Int. J. Biochem. Mol. Biol.3 ( 2 ), 179 – 197 ( 2012 ).
  • Barth N Langmann T Schölmerich J Schmitz G Schäffler A . Identification of regulatory elements in the human adipose most abundant gene transcript-1 (apM-1) promoter: role of SP1/SP3 and TNF-α as regulatory pathways . Diabetologia45 ( 10 ), 1425 – 1433 ( 2002 ).
  • Li S Wang Q Qiang Q et al. Sp1-mediated transcriptional regulation of MALAT1 plays a critical role in tumor . J. Cancer Res. Clin. Oncol.141 ( 11 ), 1909 – 1920 ( 2015 ).
  • Pardali K Kurisaki A Moren A Ten Dijke P Kardassis D Moustakas A . Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta . J. Biol. Chem.275 ( 38 ), 29244 – 29256 ( 2000 ).
  • Castro-Gamero AM Borges KS Moreno DA et al. Tetra-O-methyl nordihydroguaiaretic acid, an inhibitor of Sp1-mediated survivin transcription, induces apoptosis and acts synergistically with chemo-radiotherapy in glioblastoma cells . Invest. New Drugs31 ( 4 ), 858 – 870 ( 2013 ).
  • Church DN Talbot DC . Survivin in solid tumors: rationale for development of inhibitors . Curr. Oncol. Rep.14 ( 2 ), 120 – 128 ( 2012 ).
  • Smolewski P . Terameprocol, a novel site-specific transcription inhibitor with anticancer activity . IDrugs11 ( 3 ), 204 – 214 ( 2008 ).
  • Batrakova EV Gendelman HE Kabanov AV . Cell-mediated drug delivery . Expert Opin. Drug Deliv.8 ( 4 ), 415 – 433 ( 2011 ).
  • Xue J Zhao Z Zhang L et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence . Nat. Nanotechnol.12 ( 7 ), 692 – 700 ( 2017 ).
  • Baratchi S Kanwar RK Kanwar JR . Survivin mutant protects differentiated dopaminergic SK-N-SH cells against oxidative stress . PLoS ONE6 ( 1 ), e15865 ( 2011 ).
  • Cheung CH Sun X Kanwar JR Bai JZ Cheng L Krissansen GW . A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-alpha therapy . Cancer Cell Int.10 , 36 ( 2010 ).
  • Kanwar JR Kamalapuram SK Kanwar RK . Survivin signaling in clinical oncology: a multifaceted dragon . Med. Res. Rev.33 ( 4 ), 765 – 789 ( 2013 ).
  • Roy K Kanwar RK Krishnakumar S Cheung CHA Kanwar JR . Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model . Int. J. Nanomed.10 , 1019 – 1043 ( 2015 ).
  • Samarasinghe RM Gibbons J Kanwar RK Kanwar JR . Nanotechnology based platforms for survivin targeted drug discovery . Expert Opin. Drug Discov.7 ( 11 ), 1083 – 1092 ( 2012 ).
  • Bhasker S Kislay R Rupinder KK Jagat KR . Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model . Toxicol. In vitro29 ( 5 ), 917 – 925 ( 2015 ).
  • Sriramoju B Kanwar RK Kanwar JR . Nanoformulated mutant SurR9-C84A: a possible key for Alzheimer's and its associated inflammation . Pharm. Res.32 ( 8 ), 2787 – 2797 ( 2015 ).
  • Garg H Suri P Gupta JC Talwar GP Dubey S . Survivin: a unique target for tumor therapy . Cancer Cell Int.16 ( 1 ), 49 ( 2016 ).
  • Monaco JJ . A molecular model of MHC class-I-restricted antigen processing . Immunol. Today13 ( 5 ), 173 – 179 ( 1992 ).
  • Germain RN . MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation . Cell76 ( 2 ), 287 – 299 ( 1994 ).
  • Nagaraj S Pisarev V Kinarsky L et al. Dendritic cell-based full-length survivin vaccine in treatment of experimental tumors . J. Immunother.30 ( 2 ), 169 – 179 ( 2007 ).
  • Rech AJ Vonderheide RH . Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells . Ann. NY Acad. Sci.1174 ( 1 ), 99 – 106 ( 2009 ).
  • Hirohashi Y Torigoe T Maeda A et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin . Clin. Cancer. Res.8 ( 6 ), 1731 – 1739 ( 2002 ).
  • Rohayem J Diestelkoetter P Weigle B et al. Antibody response to the tumor-associated inhibitor of apoptosis protein survivin in cancer patients . Cancer Res.60 ( 7 ), 1815 – 1817 ( 2000 ).
  • Widenmeyer M Griesemann H Stevanović S et al. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients . Int. J. Cancer131 ( 1 ), 140 – 149 ( 2012 ).
  • Hills T Jakeman PG Carlisle RC Klenerman P Seymour LW Cawood R . A rapid-response humoral vaccine platform exploiting pre-existing non-cognate populations of anti-vaccine or anti-viral CD4+ T helper cells to confirm B cell activation . PLoS ONE11 ( 11 ), e0166383 ( 2016 ).
  • Zhao PW Shi X Li C et al. IL-33 enhances humoral immunity against chronic HBV infection through activating CD4(+)CXCR5(+) TFH cells . J. Interferon Cytokine Res.35 ( 6 ), 454 – 463 ( 2015 ).
  • Dienz O Eaton SM Bond JP et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells . J. Exp. Med.206 ( 1 ), 69 – 78 ( 2009 ).
  • Ryan BM O'donovan N Duffy MJ . Survivin: a new target for anti-cancer therapy . Cancer Treat. Rev.35 ( 7 ), 553 – 562 ( 2009 ).
  • Belardelli F . Role of interferons and other cytokines in the regulation of the immune response . APMIS103 ( 1–6 ), 161 – 179 ( 1995 ).
  • Azmi AS Bao B Sarkar FH . Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review . Cancer Metastasis Rev.32 ( 3 ), 623 – 642 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.