248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound-Enhanced Delivery of Doxorubicin/All-Trans Retinoic Acid-Loaded Nanodiamonds Into Tumors

, , , , &
Pages 981-996 | Received 14 Dec 2017, Accepted 15 Feb 2018, Published online: 14 Mar 2018

References

  • Kang K Ma J Yi Q Gu Z . Localized drug release and effective chemotherapy by hyperthermia-governed bubble-generating hybrid nanocapsule system . Nanomedicine (Lond.)12 ( 24 ), 2763 – 2783 ( 2017 ).
  • Sun T Zhang YS Pang B Hyun DC Yang M Xia Y . Engineered nanoparticles for drug delivery in cancer therapy . Angew. Chem. Int. Ed. Engl.53 ( 46 ), 12320 – 12364 ( 2014 ).
  • Zhao X Yang K Zhao R et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy . Biomaterials102 , 187 – 197 ( 2016 ).
  • Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting . Adv. Enzyme Regul.41 , 189 – 207 ( 2001 ).
  • Mo S Carlisle R Laga R et al. Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours . J. Control. Rel.210 , 10 – 18 ( 2015 ).
  • Wang X Low XC Hou W et al. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells . ACS Nano8 ( 12 ), 12151 – 12166 ( 2014 ).
  • Park K . Facing the truth about nanotechnology in drug delivery . ACS Nano7 ( 9 ), 7442 – 7447 ( 2013 ).
  • Mura S Nicolas J Couvreur P . Stimuli-responsive nanocarriers for drug delivery . Nat. Mater.12 ( 11 ), 991 – 1003 ( 2013 ).
  • Lakshmanan S Gupta GK Avci P et al. Physical energy for drug delivery; poration, concentration and activation . Adv. Drug Deliv. Rev.71 , 98 – 114 ( 2014 ).
  • Theek B Baues M Ojha T et al. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR . J. Control. Rel.231 , 77 – 85 ( 2016 ).
  • Wu P Jia Y Qu F et al. Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action . ACS Appl. Mater. Interfaces9 ( 31 ), 25706 – 25716 ( 2017 ).
  • Sirsi SR Borden MA . State-of-the-art materials for ultrasound-triggered drug delivery . Adv. Drug Deliv. Rev.72 , 3 – 14 ( 2014 ).
  • Wang Q Manmi K Liu KK . Cell mechanics in biomedical cavitation . Interface Focus5 ( 5 ), 20150018 ( 2015 ).
  • Liu J Zhang P Liu P et al. Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force . Mol. Imaging11 ( 1 ), 58 – 66 ( 2012 ).
  • Ferrara KW . Driving delivery vehicles with ultrasound . Adv. Drug Deliv. Rev.60 ( 10 ), 1097 – 1102 ( 2008 ).
  • Dayton PA Allen JS Ferrara KW . The magnitude of radiation force on ultrasound contrast agents . J. Acoust. Soc. Am.112 ( 5 Pt 1 ), 2183 – 2192 ( 2002 ).
  • Whitlow J Pacelli S Paul A . Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions . J. Control. Rel.261 , 62 – 86 ( 2017 ).
  • Basu S Pacelli S Wang J Paul A . Adoption of nanodiamonds as biomedical materials for bone repair . Nanomedicine (Lond.)12 ( 24 ), 2709 – 2713 ( 2017 ).
  • Chow EK Zhang XQ Chen M et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment . Sci. Transl. Med.3 ( 73 ), 73ra21 ( 2011 ).
  • Zhao J Lu M Lai H et al. Delivery of amonafide from fructose-coated nanodiamonds by oxime ligation for the treatment of human breast cancer . Biomacromolecules19 ( 2 ), 481 – 489 ( 2018 ).
  • Zhu Y Li J Li W et al. The biocompatibility of nanodiamonds and their application in drug delivery systems . Theranostics2 ( 3 ), 302 – 312 ( 2012 ).
  • Zhang X Yin J Kang C et al. Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation . Toxicol. Lett.198 ( 2 ), 237 – 243 ( 2010 ).
  • Rojas S Gispert JD Martin R et al. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission . ACS Nano5 ( 7 ), 5552 – 5559 ( 2011 ).
  • Yuan Y Wang X Jia G et al. Pulmonary toxicity and translocation of nanodiamonds in mice . Diamond Relat. Mater.19 ( 4 ), 291 – 299 ( 2010 ).
  • Moore L Yang J Lan TT et al. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis . ACS Nano10 ( 8 ), 7385 – 7400 ( 2016 ).
  • Lee DK Kee T Liang Z et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial . Proc. Natl Acad. Sci. USA114 ( 45 ), E9445 – E9454 ( 2017 ).
  • Chang LY Osawa E Barnard AS . Confirmation of the electrostatic self-assembly of nanodiamonds . Nanoscale3 ( 3 ), 958 – 962 ( 2011 ).
  • Li L Tian L Zhao W Li Y Yang B . Acetate ions enhance load and stability of doxorubicin onto PEGylated nanodiamond for selective tumor intracellular controlled release and therapy . Integr. Biol. (Camb.)8 ( 9 ), 956 – 967 ( 2016 ).
  • Moore LK Chow EK Osawa E Bishop JM Ho D . Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression . Adv. Mater.25 ( 26 ), 3532 – 3541 ( 2013 ).
  • Liu KK Zheng WW Wang CC et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy . Nanotechnology21 ( 31 ), 315106 ( 2010 ).
  • Zhang Y Li P Pan H et al. Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy . Biomaterials83 , 219 – 232 ( 2016 ).
  • Connolly RM Nguyen NK Sukumar S . Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment . Clin. Cancer Res.19 ( 7 ), 1651 – 1659 ( 2013 ).
  • Tang XH Gudas LJ . Retinoids, retinoic acid receptors, and cancer . Annu. Rev. Pathol.6 , 345 – 364 ( 2011 ).
  • Park SH Lim JS Jang KL . All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27 . Cancer Lett.310 ( 2 ), 232 – 239 ( 2011 ).
  • Lin YW Raj EN Liao WS et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition . Sci. Rep.7 ( 1 ), 9814 ( 2017 ).
  • Lim DG Jung JH Ko HW Kang E Jeong SH . Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells . ACS Appl. Mater. Interfaces8 ( 36 ), 23558 – 23567 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.