427
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mannosylated Thiolated Paromomycin-Loaded PLGA Nanoparticles for The Oral Therapy of Visceral Leishmaniasis

, , , , , , , & show all
Pages 387-406 | Received 03 Feb 2018, Accepted 02 Oct 2018, Published online: 28 Jan 2019

References

  • Van Griensven J , DiroE. Visceral leishmaniasis. Clin. Infect. Dis.26 (2), 309–322 (2012).
  • Yasinzai M , KhanM, NadhmanA, ShahnazG. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives. Future Med. Chem.5 (15), 1877–1888 (2013).
  • Carneiro G , AguiarMG, FernandesAP, FerreiraLaM. Drug delivery systems for the topical treatment of cutaneous leishmaniasis. Expert Opin. Drug Deliv.9 (9), 1083–1097 (2012).
  • Sarwar HS , AkhtarS, SohailMFet al. Redox biology of leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine12 (14), 1713–1725 (2017).
  • Jain K , VermaAK, MishraPR, JainNK. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob. Agents Chemother.59 (5), 2479–2487 (2015).
  • Ribeiro TG , Chávez-FumagalliMA, ValadaresDGet al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int. J. Nanomed.9, 877 (2014).
  • Chattopadhyay A , JafurullaM. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem. Biophys. Res. Commun.416 (1), 7–12 (2011).
  • Croft SL , SundarS, FairlambAH. Drug resistance in leishmaniasis. Clin. Microbiol. Rev.19 (1), 111–126 (2006).
  • Kumar P , BoseP. Targeted delivery of paromomycin to leishmania infected macrophage by hemoglobin-tagged nanocarrier. J. App. Pharm.8, 212 (2015).
  • Sundar S , ChakravartyJ. Paromomycin in the treatment of leishmaniasis. Expert Opin. Investig. Drugs17 (5), 787–794 (2008).
  • Shahnaz G , EdagwaBJ, McMillanJet al. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine12 (2), 99–115 (2017).
  • Sarwar HS , AshrafS, AkhtarSet al. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine13 (1), 25–41 (2018).
  • Singodia D , VermaA, VermaRK, MishraPR. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. Nanomedicine8 (4), 468–477 (2012).
  • Chaubey P , MishraB. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr. Polym.101, 1101–1108 (2014).
  • Kumari A , YadavSK, YadavSC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B75 (1), 1–18 (2010).
  • Chalikwar SS , MeneBS, PardeshiCV, BelgamwarVS, SuranaSJ. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization. Polym. Plast. Technol. Eng.52 (4), 368–380 (2013).
  • Guo M , RongW-T, HouJet al. Mechanisms of chitosan-coated poly (lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin. Nanotechnology24 (24), 245101 (2013).
  • Sohail MF , JavedI, HussainSZet al. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J. Mater. Chem. B4 (37), 6240–6248 (2016).
  • Chronopoulou L , MassimiM, GiardiMFet al. Chitosan-coated PLGA nanoparticles: a sustained drug-release strategy for cell cultures. Colloids Surf. B103, 310–317 (2013).
  • Laffleur F , ShahnazG, IslambulchilarZ, Bernkop-SchnürchA. Design and in vitro evaluation of a novel polymeric excipient for buccal applications. Future Med. Chem.5 (5), 511–522 (2013).
  • Naz K , ShahnazG, AhmedNet al. Formulation and in vitro characterization of thiolated buccoadhesive film of fluconazole. AAPS Pharm. Sci. Tech.18 (4), 1043–1055 (2017).
  • Ng LG , HsuA, MandellMAet al. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathogens4 (11), e1000222 (2008).
  • Weischenfeldt J , PorseB. Bone marrow-derived macrophages (BMM): isolation and applications. Cold Spring Harb. Protoc.3 (12), pdb. prot5080 (2008).
  • Terrazas C , OghumuS, VarikutiS, Martinez-SaucedoD, BeverleySM, SatoskarAR. Uncovering leishmania–macrophage interplay using imaging flow cytometry. J. Immunol. Methods423, 93–98 (2015).
  • da Costa-Silva TA , GreccoSS, de SousaFSet al. Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from Nectandra leucantha. J. Nat. Prod.78 (4), 653–657 (2015).
  • Wang Y , LiP, KongL. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS Pharm. Sci. Tech.14 (2), 585–592 (2013).
  • Meng Z , ZhengW, LiL, ZhengY. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater. Chem. Phys.125 (3), 606–611 (2011).
  • Khan W , KumarN. Drug targeting to macrophages using paromomycin-loaded albumin microspheres for treatment of visceral leishmaniasis: an in vitro evaluation. J. Drug Target19 (4), 239–250 (2011).
  • Lee M-J , SeoD-Y, LeeH-E, ChoiGJ. Therapeutic effect of chitosan modification on salmon-calcitonin-loaded PLGA nanoparticles. Korean J. Chem. Eng.28 (6), 1406–1411 (2011).
  • Roldo M , HornofM, CalicetiP, Bernkop-SchnürchA. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm.57 (1), 115–121 (2004).
  • Iqbal J , ShahnazG, PereraG, HintzenF, SartiF, Bernkop-SchnürchA. Thiolated chitosan: development and in vivo evaluation of an oral delivery system for leuprolide. Eur. J. Pharm. Biopharm.80 (1), 95–102 (2012).
  • Khanal S , AdhikariU, RijalNP, BhattaraiSR, SankarJ, BhattaraiN. pH-responsive PLGA nanoparticle for controlled payload delivery of diclofenac sodium. J. Funct. Biomater.7 (3), 21 (2016).
  • Cummings HE , TuladharR, SatoskarAR. Cytokines and their STATs in cutaneous and visceral leishmaniasis. BioMed. Res. Int.2010 (2010). Doi: 10.1155/2010/294389.
  • Nylén S , SacksD. Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol.28 (9), 378–384 (2007).
  • Selvapandiyan A , DeyR, GannavaramSet al. Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. Asian Pac. J. Trop. Dis.2012 (2012). doi: 10.1155/2012/631460.
  • Alexander J , CarterKC, Al-FasiN, SatoskarA, BrombacherF. Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur. J. Immunol.30 (10), 2935–2943 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.