3,658
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sorafenib-Loaded Polymeric Micelles As Passive Targeting Therapeutic Agents for Hepatocellular Carcinoma Therapy

, , , , , , , & show all
Pages 1009-1023 | Received 07 Feb 2018, Accepted 16 Mar 2018, Published online: 09 Apr 2018

References

  • Maluccio M Covey A . Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma . CA Cancer J. Clin.62 ( 6 ), 394 – 399 ( 2012 ).
  • Torre LA Bray F Siegel RL Ferlay J Lortet-Tieulent J Jemal A . Global cancer statistics, 2012 . CA Cancer J. Clin.65 ( 2 ), 87 – 108 ( 2015 ).
  • Siegel RL Miller KD Jemal A . Cancer statistics, 2018 . CA Cancer J. Clin.68 ( 1 ), 7 – 30 ( 2018 ).
  • Forner A Llovet JM Bruix J . Hepatocellular carcinoma . The Lancet379 ( 9822 ), 1245 – 1255 ( 2012 ).
  • Liu C Chen Z Chen Y et al. Improving oral bioavailability of sorafenib by optimizing the ‘spring’ and ‘parachute’ based on molecular interaction mechanisms . Mol. Pharm.13 ( 2 ), 599 – 608 ( 2016 ).
  • Ranieri GG-CG Goffredo V Patruno R et al. Sorafenib (BAY 43–9006) in hepatocellular carcinoma patients: from discovery to clinical development . Curr. Med. Chem.19 , 938 – 944 ( 2012 ).
  • Ganten TM Stauber RE Schott E et al. Sorafenib in patients with hepatocellular carcinoma-results of the observational INSIGHT study . Clin. Cancer Res.23 ( 19 ), 5720 – 5728 ( 2017 ).
  • Potenza N Mosca N Zappavigna S et al. MicroRNA-125a-5p is a downstream effector of sorafenib in its antiproliferative activity toward human hepatocellular carcinoma cells . J. Cell Physiol.232 ( 7 ), 1907 – 1913 ( 2017 ).
  • Cheng AL Kang YK Chen ZD et al. Efficacy and safety of sorafenib in patients in the Asia–pacific region with advanced hepatocellular carcinoma: a Phase III randomised, double-blind, placebo-controlled trial . Lancet Oncol.10 ( 1 ), 25 – 34 ( 2009 ).
  • Josep M. Llovet Sergio Ricci Vincenzo Mazzaferro et al. Sorafenib in advanced hepatocellular carcinoma . N. Engl. J. Med.359 ( 4 ), 378 – 390 ( 2008 ).
  • Lang L . FDA approves sorafenib for patients with inoperable liver cancer . Gastroenterology134 ( 2 ), 379 ( 2008 ).
  • Ma MKF Lau EYT Leung DHW et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation . J. Hepatol.67 ( 5 ), 979 – 990 ( 2017 ).
  • Xiao YA Liu YJ Yang SM et al. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment . Colloids Surf. B Biointerfaces141 , 83 – 92 ( 2016 ).
  • Zhao R Li T Zheng G Jiang K Fan L Shao J . Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex . Biomaterials143 , 1 – 16 ( 2017 ).
  • Silva JO Fernandes RS Lopes SC et al. pH-sensitive, long-circulating liposomes as an alternative tool to deliver doxorubicin into tumors: a feasibility animal study . Mol. Imaging Biol.18 ( 6 ), 898 – 904 ( 2016 ).
  • Feng L Gao M Tao D et al. Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy . Adv. Funct. Mater.26 ( 13 ), 2207 – 2217 ( 2016 ).
  • Gupta L Sharma AK Gothwal A et al. Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics . Int. J. Pharm.528 ( 1–2 ), 88 – 99 ( 2017 ).
  • Wei T Chen C Liu J et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance . Proc. Natl Acad. Sci. USA112 ( 10 ), 2978 – 2983 ( 2015 ).
  • Zhu MH Chen SC Hua LB et al. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells . Nanomedicine12 ( 4 ), 295 – 315 ( 2017 ).
  • Yu L Lin C Zheng Z Li Z Wang X . Self-assembly of pH-responsive biodegradable mixed micelles based on anionic and cationic polycarbonates for doxorubicin delivery . Colloids Surf. B Biointerfaces145 , 392 – 400 ( 2016 ).
  • Yao X Niu X Ma K et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy . Small13 ( 2 ), 1602225 ( 2017 ).
  • Wang HY Zhang MJ Zhang LY et al. Near-infrared light and pH-responsive Au@carbon/calcium phosphate nanoparticles for imaging and chemo-photothermal cancer therapy of cancer cells . Dalton Trans.46 ( 43 ), 14746 – 14751 ( 2017 ).
  • Xu X Ho W Zhang X Bertrand N Farokhzad O . Cancer nanomedicine: from targeted delivery to combination therapy . Trends Mol. Med.21 ( 4 ), 223 – 232 ( 2015 ).
  • Jin H Pi J Zhao Y et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy . Nanoscale9 ( 42 ), 16365 – 16374 ( 2017 ).
  • Jin Y Ma X Zhang S et al. A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma . Cancer Lett397 , 61 – 71 ( 2017 ).
  • Yang YC Cai J Yin J Zhang J Wang KL Zhang ZT . Heparin-functionalized pluronic nanoparticles to enhance the antitumor efficacy of sorafenib in gastric cancers . Carbohydr. Polym.136 , 782 – 790 ( 2016 ).
  • Depalo N Iacobazzi RM Valente G et al. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma . Nano Res.10 ( 7 ), 2431 – 2448 ( 2017 ).
  • Grossen P Witzigmann D Sieber S Huwyler J . PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application . J. Control. Rel.260 , 46 – 60 ( 2017 ).
  • Cui C Yu P Wu M et al. Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release . Colloids Surf. B Biointerfaces129 , 137 – 145 ( 2015 ).
  • Li D-D Ma Y Du J et al. Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy . Nano lett.17 ( 5 ), 2871 – 2878 ( 2017 ).
  • Wang Q Jiang J Chen W Jiang H Zhang Z Sun X . Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis . J. Control. Rel.230 , 64 – 72 ( 2016 ).
  • Lin W Yao N Qian L et al. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics . Acta Biomater.58 , 455 – 465 ( 2017 ).
  • Yao C Liu J Wu X et al. Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy . J. Control. Rel.232 , 203 – 214 ( 2016 ).
  • Mi Y Mu C Wolfram J et al. A micro/nano composite for combination treatment of melanoma lung metastasis . Adv. Healthc. Mater.5 ( 8 ), 936 – 946 ( 2016 ).
  • Zhang J Wang TQ Mu SJ Olerile LD Yu XY Zhang N . Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy . Nanomedicine12 ( 8 ), 911 – 925 ( 2017 ).
  • Yang SM Zhang B Gong XW Wang TQ Liu YJ Zhang N . In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer . Int. J. Nanomed.11 , 15 ( 2016 ).
  • Hu Q Gao X Kang T et al. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels . Biomaterials34 ( 37 ), 9496 – 9508 ( 2013 ).
  • Thapa RK Choi JY Poudel BK et al. Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma . ACS Appl. Mater. Interfaces7 ( 36 ), 20360 – 20368 ( 2015 ).
  • Lin Ts T Gao DY Liu YC et al. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis . J. Control. Rel.221 , 62 – 70 ( 2016 ).
  • Nishiyama N Matsumura Y Kataoka K . Development of polymeric micelles for targeting intractable cancers . Cancer Sci.107 ( 7 ), 867 – 874 ( 2016 ).
  • Xu Y Liang X Bhattarai P et al. Enhancing therapeutic efficacy of combined cancer phototherapy by ultrasound-mediated in situ conversion of near-infrared cyanine/porphyrin microbubbles into nanoparticles . Adv. Funct. Mater.27 ( 48 ), 1704096 ( 2017 ).
  • Wu C Chen H Wu X et al. The influence of tumor-induced immune dysfunction on immune cell distribution of gold nanoparticles in vivo . Biomater. Sci.5 ( 8 ), 1531 – 1536 ( 2017 ).
  • Liang S Yang X-Z Du X-J et al. Optimizing the size of micellar nanoparticles for efficient siRNA delivery . Adv. Funct. Mater.25 ( 30 ), 4778 – 4787 ( 2015 ).
  • Gu G Xia H Hu Q et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy . Biomaterials34 ( 1 ), 196 – 208 ( 2013 ).
  • Zhu X Sun Y Chen D et al. Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function . J. Control. Rel.254 , 107 – 118 ( 2017 ).