123
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Comparative Toxicity of PEG and Folate-Derived Blue-Emitting Silicon Nanoparticles: In Vitro and In Vivo Studies

, , , , , , & show all
Pages 375-385 | Received 23 Jul 2018, Accepted 08 Nov 2018, Published online: 28 Jan 2019

References

  • Llansola Portolés MJ , NietoFR, SoriaDBet al. Photophysical properties of blue-emitting silicon nanoparticles. J. Phys. Chem. C113, 13694–13702 (2009).
  • Llansola Portolés MJ , David GaraPM, KotlerMLet al. Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir26 (13), 10953–10960 (2010).
  • Romero JJ , Llansola-PortolésMJ, Dell’ArcipreteML, RodríguezHB, MooreAL, GonzalezMC. Photoluminescent 1–2 nm sized silicon nanoparticles: a surface-dependent system. Chem. Mater.25 (17), 3488–3498 (2013).
  • Lillo CR , RomeroJJ, PortolésML, DiezRP, CaregnatoP, GonzalezMC. Organic coating of 1–2-nm size silicon nanoparticles: effect on particle properties. Nano Res.8 (6), 2047–2062 (2015).
  • Lillo CR , Natalia CalienniM, GorojodRMet al. Toward biomedical application of amino-functionalized silicon nanoparticles. Nanomedicine13 (11), 1349–1370 (2018).
  • Jokerst JV , LobovkinaT, ZareRN, GambhirSS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine6 (4), 715–728 (2011).
  • Lu Y , LowPS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev.54 (5), 675–693 (2012).
  • Calienni MN , TempranaCF, PrietoMJet al. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation. Drug Deliv. Transl. Res.8 (3), 496–514 (2017).
  • Calienni MN , CagelM, MontanariJet al. Zebrafish (Danio rerio) model as an early stage screening tool to study the biodistribution and toxicity profile of doxorubicin-loaded mixed micelles. Toxicol. Appl. Pharmacol.357, 106–114 (2018).
  • Calienni MN , FeasDA, IgartúaDE, ChiaramoniNS, Alonso S delV, PrietoMJ. Nanotoxicological and teratogenic effects: a linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol. Appl. Pharmacol.337, 1–11 (2017).
  • Gara PMD , GarabanoNI, PortolesMJLet al. ROS enhancement by silicon nanoparticles in x-ray irradiated aqueous suspensions and in glioma C6 cells. J. Nanoparticle Res.14 (3), (2012).
  • Teijeiro-Valiño C , Yebra-PimentelE, Guerra-VarelaJ, CsabaN, AlonsoMJ, SánchezL. Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine12 (17), 2069–2082 (2017).
  • De Esch C , SliekerR, WolterbeekA, WoutersenR, de GrootD. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. Neurotoxicol. Teratol.34 (6), 545–553 (2012).
  • He JH , GuoSY, ZhuFet al. A zebrafish phenotypic assay for assessing drug-induced hepatotoxicity. J. Pharmacol. Toxicol. Methods67 (1), 25–32 (2013).
  • Drapeau P , Saint-AmantL, BussRR, ChongM, McDearmidJR, BrusteinE. Development of the locomotor network in zebrafish. Prog. Neurobiol.68 (2), 85–111 (2002).
  • Airhart MJ , LeeDH, WilsonTD, MillerBE, MillerMN, SkalkoRG. Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol. Teratol.29 (6), 652–664 (2007).
  • Brustein E , Saint-AmantL, BussRR, ChongM, McDearmidJR, DrapeauP. Steps during the development of the zebrafish locomotor network. J. Physiol. Paris77–86 (2003).
  • Selderslaghs IWT , HooyberghsJ, BlustR, WittersHE. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol. Teratol.37, 44–56 (2013).
  • Bhattacharjee S , RietjensIMCM, SinghMPet al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale5 (11), 4870–4883 (2013).
  • Oyewumi MO , YokelRA, JayM, CoakleyT, MumperRJ. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Rel.95 (3), 613–626 (2004).
  • Klein S , Dell’ArcipreteML, WegmannMet al. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun.434 (2), 217–222 (2013).
  • Prieto MJ , BacigalupeD, PardiniOet al. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int. J. Pharm.326 (1–2), 160–168 (2006).
  • Lu F , WuSH, HungY, MouCY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small5 (12), 1408–1413 (2009).
  • Aillon KL , XieY, El-GendyN, BerklandCJ, ForrestML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev.61 (6), 457–466 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.