157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tumor Blood Perfusion-Based Requirement of Nanoparticle Dose-Loadings for Plasmonic Photothermal Therapy

&
Pages 1841-1855 | Received 16 Dec 2018, Accepted 04 Apr 2019, Published online: 03 Jul 2019

References

  • Hirsch LR , StaffordRJ , BanksonJAet al. Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc. Natl Acad. Sci. USA100(23), 13549–13554 (2003).
  • Maltzahn GV , ParkJ , AgrawalAet al. Computationally guided photothermal tumour therapy using long-circulating gold nanorod antennas. Cancer Res.69(9), 3892–3900 (2009).
  • Kennedy LC , BickfordLR , LewinskiNAet al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small7(2), 169–183 (2011).
  • Bagley AF , HillS , RogersGS , BhatiaSN. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano9(7), 8089–8097 (2013).
  • Panikkanvalappil SR , HooshmandN , El-SayedMA. Intracellular assembly of nuclear-targeted gold nanosphere enables selective plasmonic photothermal therapy of cancer by shifting their absorption wavelength toward near-infrared region. Bioconjugate Chem.28, 2452–2460 (2017).
  • Hwang S , NamJ , JungS , SongJ , DohH , KimS. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine9(13), 2003–2022 (2014).
  • Vaupel P , KallinowskiF , OkunieffP. Blood flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res.49, 6449–6465 (1989).
  • Wilson CBJH , LammertsmaAA , McKenzieCG , SikoraK , JonesT. Measurements of blood flow and exchanging water space in breast tumours using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res.52, 1592–1597 (1992).
  • Mankoff DA , DunnwaldLK , GralowJRet al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J. Nucl. Med.43(4), 500–509 (2002).
  • Benjaminsen IC , GraffBA , BrurbergKG , RofstadEK. Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn. Reson. Med.52, 269–276 (2004).
  • Vaupel P . Pathophysiology of solid tumours. In: The Impact of Tumour Biology on Cancer Treatment and Multidisciplinary Strategies. MollsM, VaupelP, NiederC, AnscherMS ( Eds). Springer-Verlag, Berlin, Germany, 51–92 (2009).
  • Chen F , CaiW. Nanomedicine for targeted photothermal cancer therapy: where are we now?Nanomedicine10(1), 1–3 (2015).
  • Wang P , WuQ , WangFet al. Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine13(18), 2245–2259 (2018).
  • Schutt DJ , HaemmerichD. Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Med. Phys.35(8), 3462–3470 (2008).
  • Wu H , ExnerAA , KrupkaTM , WeinbergBD , HaagaJR. Vasomodulation of tumour blood flow: effect on perfusion and thermal ablation size. Ann. Biomed. Eng.37(3), 552–564 (2009).
  • Soni S , TyagiH , TaylorRA , KumarA. The influence of tumor blood perfusion variability on thermal damage during nanoparticle-assisted thermal therapy. Int. J. Hyperthermia31(6), 615–625 (2015).
  • Zhang C , JohnsonDT , BrazelCS. Numerical study on multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles. IEEE Trans. Nanobiosci.7(4), 267–275 (2008).
  • Dombrovsky LA , TimchenkoV , JacksonM. Indirect heating strategy for laser induced hyperthermia: an advanced thermal model. Int. J. Heat Mass Transf.55, 4688–4700 (2012).
  • Soni S , TyagiH , TaylorRA , KumarA. Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy. J. Therm. Biol.43, 70–80 (2014).
  • Soni S , SinhaRK. Controlling parameters for plasmonic photothermal ablation of a tumor. IEEE J. Sel. Top. Quantum Electron. ( special issue on Nanobiophotonics) 22(4), 4600608 (2016).
  • Lyng H , SkrettingA , RofstadEK. Blood flow in six human melanoma xenograft lines with different growth characteristics. Cancer Res.52, 584–592 (1992).
  • Jain RK . Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng.01, 241–263 (1999).
  • Gaustad JV , BenjaminsenIC , GraffBA , BrurbergKG , RuudEM , RofstadEK. Intratumor heterogeneity in blood perfusion in orthotopic human melanoma xenografts assessed by dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging21, 792–800 (2005).
  • Jain RK , StylianopoulosT. Delivering nanomedicine to solid tumours. Nature Rev. Clin. Oncol.7, 653–664 (2010).
  • He X , McGeeS , CoadJEet al. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int. J. Hyperthermia20(6), 567–593 (2004).
  • Link S , MohamedMB , El-SayedMA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B103, 3073–3077 (1999).
  • Mobley J , Vo-DinhT. Optical properties of tissue. In: Biomedical Photonics Handbook. Vo-DinhT (Ed.). CRC Press LLC, CA, USA (2003).
  • Soni S , TyagiH , TaylorRA , KumarA. Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorods-assisted thermal therapy. Int. J. Hyperthermia29(1), 87–97 (2013).
  • Kuszyk BS , CorlFM , FrananoFNet al. Tumour transport physiology: implications for imaging and imaging guided therapy. Am. J. Roentgenol.177, 747–753 (2001).
  • Bohren CF , HuffmanD. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., NY, USA136–146 (1998).
  • Tromberg BJ , ShahN , LanningRet al. Non invasive in vivo characterization of breast tumours using photon migration spectroscopy. Neoplasia2, 26–40 (2000).
  • Tuchin VV . Light tissue interactions. In: Biomedical Photonics Handbook. Vo-DinhT ( Ed.). CRC Press LLC, Boca Raton, Florida, USA Ch. 3 (2003).
  • Zonios G , DimouA. Light scattering spectroscopy of human skin in vivo. Opt. Express17(3), 1256–1267 (2009).
  • Jacques SL . Optical properties of biological tissues: a review. Phys. Med. Biol.58, R37–R61 (2013).
  • Jacques SL . Monte-Carlo modeling of light transport in tissue. In: Optical-Thermal Response of Laser-Irradiated Tissue. WelchAJ, GemertMJC ( Eds). Springer Science+Business Media, NY, USA, 109–144 (2011).
  • Welch AJ . The thermal response of laser irradiated tissue. IEEE J. Quantum Electron.20(12), 1471–1481 (1984).
  • Gaponenko SV . Introduction to Nanophotonics.Cambridge University Press, NY, USA, 190–191 (2010).
  • Wissler EH . Pennes’ 1948 paper revisited. J. Appl. Physiol.85, 35–41 (1998).
  • Incropera FP , DewittDP. Fundamentals of Heat and Mass Transfer.Wiley India, New Delhi, India, 280–283 (2009).
  • Wright NT . On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng.125, 300–304 (2003).
  • Dewhirst MW , VigliantiBL , Lora-MichielsM , HansonM , HoopesPJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia19(3), 267–294 (2013).
  • Pearce J . Mathematical models of laser-induced tissue thermal damage. Int. J. Hyperthermia27(8), 741–750 (2011).
  • Pearce JA . Comparative analysis of mathematical models of cell death and thermal damage processes. Int. J. Hyperthermia29(4), 262–280 (2013).
  • Soni S , TyagiH , TaylorRA , KumarA. Experimental and numerical investigation of heat confinement during nanoparticle assisted thermal therapy. Int. Comm. Heat Mass Transf.69, 11–17 (2015).
  • Ali MR , RahmanMA , WuYet al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl Acad. Sci. USA114(15), E3110–E3118 (2017).
  • Bucharskaya AB , MaslyakovaGN , ChekhonatskayaMLet al. Plasmonic photothermal therapy: approaches to advanced strategy. Lasers Surg. Med.50(10), 1025–1033 (2018).
  • Aliannezhadi M ,  MinbashiM ,  TuchinVV. Effect of laser intensity and exposure time on photothermal therapy with nanoparticles heated by a 793-nm diode laser and tissue optical clearing. Quantum Electronics48(6), 559–564 (2018).
  • Datsko BY , GafiychukVV , LubashevskyIA , PriezzhevAV. Self-localization of laser induced tumour coagulation limited by heat diffusion through active tissue. J. Med. Eng. Technol.30(6), 390–396 (2006).
  • Wang T , ZhaoG , QiuB. Theoretical evaluation of the treatment effectiveness of a novel coaxial multi-slot antenna for conformal microwave ablation of tumors. Int. J. Heat Mass Transf.90, 81–91 (2015).
  • Yan Mi , ShaoqinRui , ChengxiangLiet al. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation. Med. Biol. Eng. Comput.55, 1109–1122 (2017).
  • Sudhakar A . History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther.1(2), 1–4 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.