124
Views
0
CrossRef citations to date
0
Altmetric
Review

Opportunities and Challenging Issues of Nanomaterials in Otological Fields: an Occupational Health Perspective

, , , & ORCID Icon
Pages 2613-2629 | Received 15 Mar 2019, Accepted 10 Jul 2019, Published online: 14 Oct 2019

References

  • Gatoo MA , NaseemS , ArfatMY , DarAM , QasimK , ZubairS. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed. Res. Int.2014, 498420 (2014).
  • Pyykkö I , ZouJ , Schrott-FischerA , GlueckertR , KinnunenP. An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol. Biol.1427, 363–415 (2016).
  • European Agency for Safety and Health at Work (EU-OSHA). Risk perception and risk communication with regard to nanomaterials in the workplace (2012). https://osha.europa.eu/en/tools-and-publications/publications/literature_reviews/risk-perception-and-risk-communication-with-regard-to-nanomaterials-in-the-workplace
  • Berkner S , SchwirnK , VoelkerD. Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ. Toxicol. Chem.35(4), 780–787 (2016).
  • Valente F , AstolfiL , SimoniEet al. Nanoparticle drug delivery systems for inner ear therapy: an overview. J. Drug Deliv. Sci. Tec.39, 28–35 (2017).
  • Agrahari V , AgrahariV , MitraAK. Inner ear targeted drug delivery: what does the future hold?Ther. Deliv.8(4), 179–184 (2017).
  • Li L , ChaoT , BrantJ , O’MalleyBJr , TsourkasA , LiD. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv. Drug Deliv. Rev.108, 2–12 (2017).
  • Shi X . Pathophysiology of the cochlear intrastrial fluid–blood barrier. Hear. Res.338, 52–63 (2016).
  • Zhao J , CastranovaV. Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev.14(8), 593–632 (2011).
  • Kayyali MN , BrakeL , RamseyAJ , WrightAC , O’MalleyBW , LiDD. A novel nano-approach for targeted inner ear imaging. J. Nanomed. Nanotechnol.8(4), pii: 456 (2017).
  • Zou J , PyykköI , HyttinenJ. Inner ear barriers to nanomedicine-augmented drug delivery and imaging. J. Otol.11(4), 165–177 (2016).
  • Kim DK . Nanomedicine for inner ear diseases: a review of recent in vivo studies. Biomed. Res. Int.2017, 3098230 (2017).
  • Salazar-Alvarez G , QinJ , SepelákVet al. Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. J. Am. Chem. Soc.130(40), 13234–13239 (2008).
  • Laurent S , ForgeD , PortMet al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108(6), 2064–2110 (2008).
  • Zou J , ZhangW , PoeDet al. MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine5(5), 739–754 (2010).
  • Zou J , OstrovskyS , IsraelLLet al. Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. J. Biomed. Mater. Res. B Appl. Biomater.105(7), 1883–1891 (2017).
  • Ge X , JacksonRL , LiuJet al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol. Head Neck Surg.137(4), 619–623 (2007).
  • Poe D , ZouJ , ZhangWet al. MRI of the cochlea with superparamagnetic iron oxide nanoparticles compared to gadolinium chelate contrast agents in a rat model. Eur. J. Nanomed.2(2), 29–36 (2009).
  • Zou J , SoodR , RanjanSet al. Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. J. Nanobiotechnol.8, 32 (2010).
  • Sosnovik DE , WeisslederR. Emerging concepts in molecular MRI. Curr. Opin. Biotechnol.18(1), 4–10 (2007).
  • Zhen M , ZhengJ , WangYet al. Multifunctional nanoprobe for MRI/optical dual-modality imaging and radical scavenging. Chemistry19(43), 14675–14681 (2013).
  • Zou J , FengH , SoodR , KinnunenPKJ , PyykkoI. Biocompatibility of liposome nanocarriers in the rat inner ear after intratympanic administration. Nanoscale Res. Lett.12(1), 372 (2017).
  • Kayyali MN , WooltortonJRA , RamseyAJet al. A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. J. Control. Rel.279, 243–250 (2018).
  • Zou J , HannulaM , MisraSet al. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J. Nanobiotechnol.13, 5 (2015).
  • Zou J , KoivistoJ , LähelmäJ , AarnisaloA , WolffJ , PyykköI. Imaging optimization of temporal bones with cochlear implant using a high-resolution cone beam CT and the corresponding effective dose. Ann. Otol. Rhinol. Laryngol.124(6), 466–473 (2015).
  • Zou J , HannulaM , LehtoKet al. X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hear. Res.326, 59–65 (2015).
  • Ray A , MukundanA , XieZ , KaramchandL , WangX , KopelmanR. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging. Nanotechnology25(44), 445104 (2014).
  • Chu L , WangS , LiK , XiW , ZhaoX , QianJ. Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging. Biomed. Opt. Express.5(11), 4076–4088 (2014).
  • Youm I , MusazziUM , GrattonMAet al. Label-free ferrocene-loaded nanocarrier engineering for in vivo cochlear drug delivery and imaging. J. Pharm. Sci.105(10), 3162–3171 (2016).
  • Pritz CO , DudásJ , Rask-AndersenH , Schrott-FischerA , GlueckertR. Nanomedicine strategies for drug delivery to the ear. Nanomedicine8(7), 1155–1172 (2013).
  • Poe DS , PyykköI. Nanotechnology and the treatment of inner ear diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(2), 212–221 (2011).
  • Borkholder DA . State-of-the-art mechanisms of intracochlear drug delivery. Curr. Opin. Otolaryngol. Head Neck Surg.16(5), 472–477 (2008).
  • Pyykkö I , ZouJ , ZhangW , ZhangY. Nanoparticle-based delivery for the treatment of inner ear disorders. Curr. Opin. Otolaryngol. Head Neck Surg.19(5), 388–396 (2011).
  • Mäder K , LehnerE , LiebauA , PlontkeSK. Controlled drug release to the inner ear: concepts, materials, mechanisms, and performance. Hear. Res.368, 49–66 (2018).
  • Hao J , LiSK. Inner ear drug delivery: recent advances, challenges, and perspective. Eur. J. Pharm. Sci.126, 82–92 (2019).
  • Yu Z , YuM , ZhangZ , HongG , XiongQ. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett.9(1), 343 (2014).
  • Zhang L , XuY , CaoW , XieS , WenL , ChenG. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine. Int. J. Nanomed.13, 479–492 (2018).
  • Gao X , WangY , ChenKet al. Magnetic assisted transport of PLGA nanoparticles through a human round window membrane model. J. Nanotech. Eng. Med.1(3), 0310101–0310106 (2010).
  • Wen X , DingS , CaiHet al. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules. Int. J. Nanomed.11, 5959–5969 (2016).
  • Tamura T , KitaT , NakagawaTet al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope115(11), 2000–2005 (2005).
  • Du X , ChenK , KuriyavarSet al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol.34(1), 41–47 (2013).
  • Youm I , YouanBB. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines. Hear. Res.304, 7–19 (2013).
  • Ding S , XieS , ChenWet al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur. J. Pharm. Sci. 126, 11–22 (2019).
  • Tan J , WangY , YipX , GlynnF , ShepherdRK , CarusoF. Nanoporous peptide particles for encapsulating and releasing neurotrophic factors in an animal model of neurodegeneration. Adv. Mater.24(25), 3362–3366 (2012).
  • Roy S , GlueckertR , JohnstonAHet al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine7(1), 55–63 (2012).
  • Zhang Y , ZhangW , LöblerMet al. Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int. J. Pharm.404 (1–2), 211–219 (2011).
  • Glueckert R , PritzCO , RoyS , DudasJ , Schrott-FischerA. Nanoparticle mediated drug delivery of rolipram to tyrosine kinase B positive cells in the inner ear with targeting peptides and agonistic antibodies. Front. Aging Neurosci.7, 71 (2015).
  • Meyer H , StöverT , FouchetFet al. Lipidic nanocapsule drug delivery: neuronal protection for cochlear implant optimization. Int. J. Nanomed.7, 2449–2464 (2012).
  • Chen G , ZhangX , YangF , MuL. Disposition of nanoparticle-based delivery system via inner ear administration. Curr. Drug Metab.11(10), 886–897 (2010).
  • Zhang Y , ZhangW , JohnstonAH , NewmanTA , PyykköI , ZouJ. Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int. J. Nanomed.7, 1015–1022 (2012).
  • Buckiová D , RanjanS , NewmanTAet al. Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine7(9), 1339–1354 (2012).
  • Soumen R , JohnstonAH , MoinSTet al. Activation of TrkB receptors by NGFβ mimetic peptide conjugated polymersome nanoparticles. Nanomedicine8(3), 271–274 (2012).
  • Zou J , SaulnierP , PerrierTet al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J. Biomed. Mater. Res. B Appl. Biomater.87(1), 10–18 (2008).
  • Lajud SA , NagdaDA , QiaoPet al. A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol. Neurotol.36(2), 341–347 (2015).
  • Hesse D , BadarM , GlageSet al. Layered double hydroxides as efficient drug delivery system of ciprofloxacin in the middle ear: an animal study in rabbits. J. Mater. Sci.24, 129–136 (2013).
  • Lensing R , BleichA , SmoczekAet al. Efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics: an animal study in rabbits. Acta Biomater.9(1), 4815–4825 (2013).
  • Ziąbka M , DziadekM , MenaszekE , BanasiukR , KrólickaA. Middle ear prosthesis with bactericidal efficacy – in vitro investigation. Molecules22(10), pii: E1681 (2017).
  • Ziąbka M , MenaszekE , TarasiukJ , WrońskiS. Biocompatible nanocomposite implant with silver nanoparticles for otology – in vivo evaluation. Nanomaterials8(10), pii: E764 (2018).
  • Ziąbka M , DziadekM , KrolickaA. Biological and physicochemical assessment of middle ear prosthesis. Polymers11(1), pii: E79 (2019).
  • Wise AK , TanJ , WangY , CarusoF , ShepherdRK. Improved auditory nerve survival with nanoengineered supraparticles for neurotrophin delivery into the deafened cochlea. PLoS ONE11(10), e0164867 (2016).
  • Sun C , ChenD , WangX. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration. Int. J. Nanomed.10, 3567–3579 (2015).
  • Gao G , LiuY , ZhouCH , JiangP , SunJJ. Solid lipid nanoparticles loaded with edaravone for inner ear protection after noise exposure. Chin. Med. J. (Engl.)128(2), 203–209 (2015).
  • Horie RT , NakagawaT , IshiharaT , HigakiM. Stealth-nanoparticle strategy for enhancing the efficacy of steroids in mice with noise-induced hearing loss. Nanomedicine5(9), 1331–1340 (2010).
  • Du X , CaiQ , WestMBet al. Regeneration of cochlear hair cells and hearing recovery through hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol. Ther.26(5), 1313–1326 (2018).
  • Tropitzsch A , ArnoldH , BassiouniMet al. Assessing cisplatin-induced ototoxicity and otoprotection in whole organ culture of the mouse inner ear in simulated microgravity. Toxicol. Lett.227(3), 203–212 (2014).
  • Marshak T , SteinerM , KaminerM , LevyL , ShupakA. Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study. Otolaryngol. Head Neck Surg.150(6), 983–990 (2014).
  • Özel HE , ÖzdoğanF , GürgenSG , EsenE , GençS , SelçukA. Comparison of the protective effects of intratympanic dexamethasone and methylprednisolone against cisplatin-induced ototoxicity. J. Laryngol. Otol.130(3), 225–234 (2016).
  • Sun C , WangX , ChenD , LinX , YuD , WuH. Dexamethasone loaded nanoparticles exert protective effects against cisplatin-induced hearing loss by systemic administration. Neurosci. Lett.619, 142–148 (2016).
  • Martín-Saldaña S , Palao-SuayR , TrinidadA , AguilarMR , Ramírez-CamachoR , SanRomán J. Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: in vitro and in vivo correlation. Nanomedicine12(4), 965–976 (2016).
  • Martín-Saldaña S , Palao-SuayR , AguilarMR , Ramírez-CamachoR , SanRomán J. Polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate to prevent cisplatin-induced ototoxicity. Acta Biomater.53, 199–210 (2017).
  • Martín-Saldaña S , Palao-SuayR , AguilarMRet al. pH-sensitive polymeric nanoparticles with antioxidant and anti-inflammatory properties against cisplatin-induced hearing loss. J. Control. Rel.270, 53–64 (2018).
  • Ramaswamy B , RoyS , ApoloAB , ShapiroB. Magnetic nanoparticle mediated steroid delivery mitigates cisplatin induced hearing loss. Front. Cell. Neurosci.11, 268 (2017).
  • Kayyali MN , RamseyAJ , Higbee-DempseyEMet al. The development of a nano-based approach to alleviate cisplatin-induced ototoxicity. J. Assoc. Res. Otolaryngol.19(2), 123–132 (2018).
  • Berglin CE , PierrePV , BramerTet al. Prevention of cisplatin-induced hearing loss by administration of a thiosulfate-containing gel to the middle ear in a guinea pig model. Cancer Chemother. Pharmacol.68(6), 1547–1556 (2011).
  • Youm I , WestMB , LiW , DuX , EwertDL , KopkeRD. siRNA-loaded biodegradable nanocarriers for therapeutic MAPK1 silencing against cisplatin-induced ototoxicity. Int. J. Pharm.528(1–2), 611–623 (2017).
  • Zilberstein Y , LibermanMC , CorfasG. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J. Neurosci.32(2), 405–410 (2012).
  • Roy S , JohnstonAH , NewmanTAet al. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery. Int. J. Pharm.390(2), 214–224 (2010).
  • Wu X , DingD , JiangHet al. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla. J. Nanopart. Res.14(1), 708 (2012).
  • Schmidt N , SchulzeJ , WarwasDPet al. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE13(3), e0194778 (2018).
  • Li H , EdinF , HayashiHet al. Guided growth of auditory neurons: bioactive particles towards gapless neural – electrode interface. Biomaterials122, 1–9 (2017).
  • Senn P , RoccioM , HahnewaldSet al. NANOCI-nanotechnology based cochlear implant with gapless interface to auditory neurons. Otol. Neurotol.38(8), e224–e231 (2017).
  • Burblies N , SchulzeJ , SchwarzHet al. Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS ONE11(7), e0158571 (2016).
  • Cai Y , EdinF , JinZet al. Strategy towards independent electrical stimulation from cochlear implants: guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomater.31, 211–220 (2016).
  • Zhou H , MaX , LiuYet al. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol. Med. Rep.11(6), 4381–4388 (2015).
  • Nguyen Y , CelerierC , PszczolinskiRet al. Superparamagnetic nanoparticles as vectors for inner ear treatments: driving and toxicity evaluation. Acta Otolaryngol.136(4), 402–408 (2016).
  • Zou J , FengH , MannerströmM , HeinonenT , PyykköI. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J. Nanobiotechnol.12, 52 (2014).
  • Musazzi UM , YoumI , MurowchickJB , EzoulinMJ , YouanBB. Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells. Colloids Surf. B Biointerfaces118, 234–242 (2014).
  • Kopke RD , WasselRA , MondalekFet al. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurootol.11(2), 123–133 (2006).
  • Feng H , PyykköI , ZouJ. Hyaluronan up-regulation is linked to renal dysfunction and hearing loss induced by silver nanoparticles. Eur. Arch. Otorhinolaryngol.272(10), 2629–2642 (2015).
  • Lafond JF , ShimojiM , RamaswamyBet al. Middle ear histopathology following magnetic delivery to the cochlea of prednisolone-loaded iron oxide nanoparticles in rats. Toxicol. Pathol.46(1), 101–106 (2018).
  • Ivanov S , ZhuravskyS , YukinaG , TomsonV , KorolevD , GalagudzaM. In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials5(10), 1873–1889 (2012).
  • Praetorius M , BrunnerC , LehnertBet al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol.127(5), 486–490 (2007).
  • Murashov V . Occupational exposure to nanomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.1(2), 203–213 (2009).
  • Murashov V , HowardJ. Risks to health care workers from nano-enabled medical products. J. Occup. Environ. Hyg.12(6), D75–D85 (2015).
  • Moss OR , WongVA. When nanoparticles get in the way: impact of projected area on in vivo and in vitro macrophage function. Inhal. Toxicol.18(10), 711–716 (2006).
  • Iavicoli I , LesoV. Nanotechnology in ear diseases: promising and challenging issues. Occup. Environ. Med.75 (Suppl. 2), A522 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.